ÍNDICE

<u>1</u>	INTRODUÇÃO	<u>-1-</u>
1.1	OBJETIVOS GERAIS	-1-
1.2	MOTIVAÇÕES	- 2 -
1.3	<i>3</i>	- 4 -
1.4	ESTRUTURA DO TEXTO	-4-
2	CONCEPÇÃO DO PROBLEMA	- 5 -
=	CONCEL ÇILO DO I KOBBEMII	
2.1	FLAMBAGEM LATERAL DE DUTOS	-5-
2.1		- 6 -
2.3		- 0 - - 7 -
4.5	1 ARAMETROS DO SOLO	- / -
_		_
<u>3</u>	MODELOS FÍSICOS	- 8 -
3.1	MODELAGEM CENTRÍFUGA	-8-
3.2	CENTRÍFUGA DO LABORATÓRIO DE GEOTECNIA – COPPE-UFRJ	- 10 -
3.3	Preparação das Amostras	- 11 -
3.4	MODELAGEM CONVENCIONAL (1G)	- 15 -
<u>4</u>	MÉTODOS DE ANÁLISE ESTRUTURAL	- 16 -
_		
4.1	Introdução	- 16 -
4.2		- 10 - - 16 -
4.3	· ·	- 17 -
4.4		- 19 -
4.5		- 20 -
4.6	•	- 24 -
•••	NODELO DE CONTINTO	
_	MODELOS NUMÉRICOS POR ELEMENTOS FINITOS	26
<u>5</u>	MODELOS NUMERICOS POR ELEMENTOS FINITOS	- 26 -
	TIPOS DE ELEMENTOS	- 26 -
5.2	· · · · · · · · · · · · · · · · · · ·	- 27 -
5.3		- 28 -
5.4		- 35 -
5.5	TIPOS DE SOLOS ANALISADOS	- 36 -
	,	
<u>6</u>	PROCEDIMENTO DE ANÁLISE	- 47 -
6.1	ESTRATÉGIA DE ANÁLISE	- 47 -
<u>7</u>	RESULTADOS	- 49 -
<u>′</u>	REBULTADUB	- 49 -
	_ ~	
7.1	Introdução	- 49 -
7.2	RESULTADOS NUMÉRICOS - GRUPO 1	- 50 -

vi	
V 1	

7.3 RESULTADOS NUMÉRICOS - GRUPO 2	- 52 -
7.4 RESULTADOS CENTRÍFUGOS	- 54 -
8 COMPARAÇÃO DOS RESULTADOS	- 55 -
9 COMENTÁRIOS FINAIS	- 58 -
9.1 VALIDAÇÃO DOS MODELOS DE ELEMENTOS FINITOS 9.2 PRÓXIMAS ATIVIDADES	- 58 - - 58 -
10 REFERÊNCIAS	- 59 -
APÊNDICE A: RESULTADOS DAS ANÁLISES NUMÉRICAS	- 61 -
APÊNDICE B: PLANILHA PADRÃO PARA COLETA DE RESULTADOS	- 64 -

1 INTRODUÇÃO

1.1 OBJETIVOS GERAIS

O transporte de óleo e gás natural, e de produtos refinados do petróleo é feito principalmente através de dutos. Essas linhas são aquecidas pela passagem do fluido à condições de pressão e temperatura elevadas, ocasionando dilatação térmica ou sobretensões pela restrição axial de movimentação. Com a ciclagem térmica, comportamentos diversos daqueles esperados para o solo proporcionam condições para ocorrência de ruptura do material devida à flambagem localizada. Os elevados custos envolvidos na construção dos sistemas de dutos requerem, por questões econômicas, o escoamento de grandes volumes com elevados níveis de segurança, tornando indispensável a utilização dessas linhas em condições severas de temperatura e pressão.

A literatura internacional ainda apresenta um número limitado de casos documentados de acidentes ocorridos por flambagem lateral de dutos, em grande parte, devido ao curto intervalo de tempo em que tais instalações petrolíferas existem. Com o crescente risco de grandes danos a oleodutos, existe hoje um consenso internacional no sentido de prevenir e minimizar os seus efeitos não somente no âmbito sócio-econômico, mas também, e principalmente, no impacto que tal acidente possa provocar à população e ao meio-ambiente.

Embora a instabilidade de dutos em interação com o solo sob carregamento térmico tenha sido reportada em artigos e livros-texto, o modo de ruptura associado ao fenômeno de flambagem lateral é relativamente pouco explorado na literatura técnica, sendo inclusive citado por alguns autores como um fenômeno dissociado de ameaças sérias de colapso.

No presente estudo apresentam-se resultados de análises numéricas realizadas via Método dos Elementos Finitos. Esse estudo numérico complementa um projeto do laboratório de Geotecnia da UFRJ de modelagem física para determinação da natureza da reação do solo para flambagem lateral de dutos enterrados em argila mole.

1.2 MOTIVAÇÕES

A série de análises, em estado plano de deformações, apresentadas neste estudo foram motivadas pela ruptura do duto PE-II da PETROBRAS na Baía de Guanabara, em 18 de janeiro de 2000 (Figura 1). Após um bem documentado estudo geotécnico e estrutural apresentado em Almeida et al. [1], os autores concluíram que a ruptura foi causada por uma flambagem elasto-plástica local devida à combinação de compressão axial e flexão excessiva geradas pela restrição à expansão térmica de um trecho da linha.

Figura 1 – Local da Ruptura no duto PE-II.

O duto PE-II, com 17 km de comprimento e 18" de diâmetro, ligava a Ilha do Governador à Refinaria Duque de Caxias no Rio de Janeiro, tendo sido utilizado por 7 anos consecutivos para o transporte de óleo aquecido a 95° C. O acidente provocou vazamento de cerca de 1,3 milhão de litros de óleo na Baía de Guanabara (Figuras 2 e 3), tendo sido, portanto, um dos maiores desastres ambientais registrados no Brasil causando sérias conseqüências ambientais, sócio-econômicas e políticas.

Figura 2 – Vista aérea do local do acidente.

Figura 3 – Vista aérea do local da ruptura.

A Figura 4 (Almeida et al. [1]) mostra uma representação esquemática do local da ruptura, com o duto apresentando um desvio lateral de cerca de 4,1 m em relação à sua posição original. Cabe ainda ressaltar que os deslocamentos se concentraram ao longo de apenas 44 m de extensão da linha, certamente a região que ofereceu menor resistência ao deslocamento lateral.

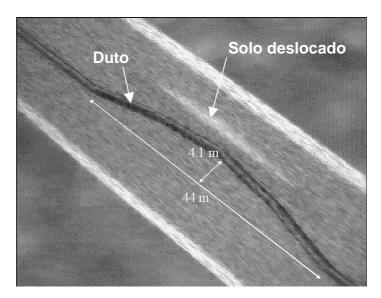


Figura 4. Representação esquemática do local do acidente.

1.3 OBJETIVOS ESPECÍFICOS

Tendo em vista o acidente do PE-II da PETROBRAS, o objetivo específico das atividades descritas no presente estudo consiste em elaborar, validar e calibrar modelos de elementos finitos visando reproduzir ensaios realizados na centrífuga geotécnica e no modelo 1g. Todos os parâmetros dos tipos de solos analisados foram retirados de bibliografía especializada e / ou de estudos realizados no Laboratório de Geotecnia da COPPE e não são o foco do presente Projeto Final de Curso.

1.4 ESTRUTURA DO TEXTO

Este estudo descreve a geração de modelos de Elementos Finitos representando modelos geotécnicos ensaiados em laboratório, bem como os resultados obtidos pelas análises não-lineares de translação lateral de dutos enterrados em diferentes profundidades. No capítulo 2 será descrita a concepção do problema estudado. O capítulo 3 descreve a modelagem física em ensaios centrífugos e convencionais 1g. Nos 4° e 5° capítulos são apresentados os conceitos e a modelagem numérica desenvolvida. Os capítulos 6 e 7 descrevem, respectivamente, o procedimento das análises e os resultados. Finalizando, há uma comparação dos resultados (experimentais x numéricos) no capítulo 8 e comentários finais no capítulo 9.

2 CONCEPÇÃO DO PROBLEMA

2.1 FLAMBAGEM LATERAL DE DUTOS

O uso, por companhias petrolíferas, de dutos *onshore* e *offshore* para transporte de óleo vem crescendo continuamente em todo mundo. Mesmo considerando-se os altos custos construtivos e as dificuldades inerentes à instalação das linhas, cada vez mais atenção é dada às condicionantes de projeto, especialmente à validade dos modelos de interação solo-estrutura adotados. Essa apreensão encontra sustento nas sérias conseqüências econômicas e ambientais de acidentes relacionados a mudanças de premissas iniciais de projeto de difícil previsão.

Segundo Almeida et al. [2] a necessidade do aumento de temperatura e pressão para viabilizar o fluxo do produto na linha de transporte transmite diretamente ao duto um significativo gradiente de temperatura causando imediata dilatação térmica longitudinal (Figura 5).

Figura 5 - Representação esquemática da flambagem de dutos devido a gradiente térmico.

As tubulações são posicionadas no leito marinho à temperatura ambiente, a carga axial devida a restrições de movimentação é praticamente nula antes da utilização da linha. Com o início da passagem do óleo, inicia-se também a ciclagem térmica, provocando continuamente aumento e redução das tensões axiais. As tensões axiais, por sua vez, induzem à flambagem do duto que busca na nova configuração um alívio das tensões. No entanto, essa configuração deformada provoca concentração de tensões de tração e compressivas em posições diametralmente opostas ao longo das seções transversais do duto. A ciclagem dessa

concentração de tensões acaba por provocar uma ruptura localizada por fadiga do material constituinte, na posição mais deformada, isto é, na posição mais afastada da configuração inicial.

Um outro aspecto de importantes conseqüências é a tendência da configuração deformada da linha, isto é, a tendência à flambagem lateral ou vertical. Na realidade, a tubulação sempre procurará a configuração de menor resistência para impor a movimentação contra o solo. Em dutos semi-enterrados, ou rasos, em solos menos resistentes, a tendência é pelo deslocamento lateral, uma vez que o peso próprio do duto oferecerá resistência maior ao levantamento. Já para dutos enterrados a profundidades maiores, em solos mais resistentes, a tendência é pelo deslocamento vertical, em função da maior dificuldade do duto em romper lateralmente o solo. As características de resistência do solo e a profundidade de enterramento são cruciais na análise desse fenômeno.

Como os solos em geral possuem correlação estreita entre resistência e profundidade, existe uma profundidade crítica, relacionada a uma resistência crítica, a partir da qual o duto encontra menos dificuldade em subir, a despeito de seu próprio peso, do que se deslocar lateralmente. Essa profundidade define a mudança de comportamento, e, portanto, a mudança de tendência.

2.2 CARACTERÍSTICAS DO DUTO

Geométricas

O duto estudado apresenta características idênticas ao PE-II, possuindo diâmetro externo de 0,46m (18") espessura de 12,7mm e é revestido por uma camisa de concreto de 50,8mm (2").

Físicas

As características físicas do duto são:

- ✓ Módulo de elasticidade longitudinal do aço: E = 210000MPa
- ✓ Coeficiente de Poisson do aço: v = 0.3;
- ✓ Coeficiente de dilatação térmica do aço: $\alpha = 1,17 \cdot 10^{-5}$ /°C;

- ✓ Peso específico do aço: $\gamma_a = 77,45 \,\mathrm{kN/m^3};$
- ✓ Peso específico do concreto: $\gamma_c = 24,46 \text{ kN/m}^3$;

2.3 Parâmetros do Solo

A curva tensão x deformação não drenada modelada pelos ensaios centrífugos foi simplificada em uma curva bilinear com plastificação perfeita ($\mu = 0$, ou seja, não há acréscimo de resistência após a plastificação do material), seguindo o critério de Von Mises (Figura 6). Para condição não drenada o coeficiente de Poisson (υ) vale aproximadamente 0,5, por razões numéricas o valor de 0,49999 foi adotado.

A parcela elástica da curva foi determinada com o módulo de elasticidade isotrópico e não drenado Eu (100Su). O inicio da plastificação é determinado pela tensão de escoamento segundo o critério de Von Mises (σy) que é igual a duas vezes o valor da resistência não drenada solo (Su).

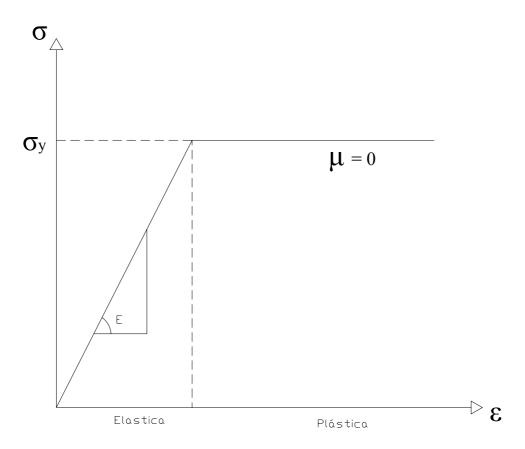


Figura 6 - Curva tensão x deformação.

3.1 MODELAGEM CENTRÍFUGA

A modelagem centrífuga representa hoje uma das melhores ferramentas geotécnicas disponíveis, uma vez que possibilita a análise de problemas reais utilizando o próprio solo como material. Segundo Taylor [3], a centrífuga geotécnica nada mais é do que um sofisticado aparato onde amostras de solo podem ser testadas.

Toda modelagem geotécnica deve respeitar, além das considerações comuns a todas as modelagens, dois aspectos fundamentais: solos são originalmente depositados em camadas, assim sendo têm características estratificadas; e o comportamento do solo é função do estado de tensões e da história de tensões, que variam com a profundidade. O grande interesse da modelagem centrífuga geotécnica está exatamente em respeitar esses aspectos fundamentais.

Modelos de solo podem ser acelerados em uma centrífuga de modo a serem submetidos a um campo inercial de aceleração radial que, desde que o modelo seja coerente, simula o campo gravitacional terrestre, porém muitas vezes maior. Uma amostra de solo em uma caixa acelerada numa centrífuga tem a superficie livre de tensões e um perfil de solo com um nível de tensões que aumenta diretamente com a profundidade a uma taxa relacionada com a densidade da amostra e o campo de aceleração criado. Assim, em um modelo corretamente planejado, uma profundidade h_m possui exatamente o mesmo nível de tensões do protótipo, para uma mesma amostra de solo, a uma profundidade h_p , onde $h_p = Nh_m$ e N é a aceleração da centrífuga. Essa é a lei básica de escala de modelos centrífugos.

Assim sendo, para obter equivalência de tensões entre o modelo centrífugo e o protótipo, as dimensões lineares devem ser reduzidas por um fator N, e o modelo acelerado em N vezes a gravidade. Dessa forma, as tensões (inerciais) a uma profundidade z/N no modelo serão idênticas às tensões (gravitacionais) a uma profundidade z no protótipo (Figura 7).

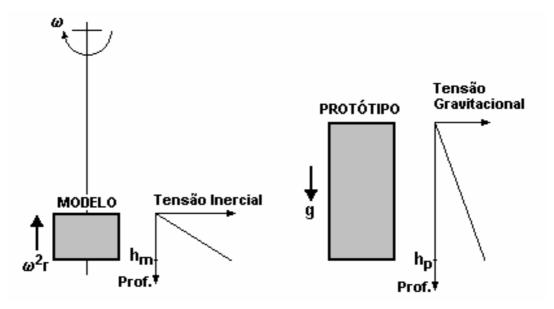


Figura 7 - Correspondência entre a tensão inercial em um modelo e a tensão gravitacional no protótipo (Taylor, [3]).

Alguns efeitos de escala devem ser considerados. A gravidade da terra pode ser considerada uniforme em termos práticos nas análises de comportamento de solos. No entanto, quando utilizando a centrífuga na geração do alto campo gravitacional requerido em modelagens físicas, há uma leve variação da aceleração ao longo do modelo (Figura 8). Isso se deve ao fato do campo de aceleração inercial variar com o quadrado da velocidade angular e com o raio ($\omega^2 r$). Esse problema aparentemente complexo torna-se menor adotando-se cuidados especiais na adoção do raio onde o fator de escala é determinado.

Dentre as principais vantagens da utilização de modelos centrífugos, a relação entre o tempo de adensamento no protótipo e no modelo é a que traz mais benefícios. O fenômeno do adensamento está diretamente relacionado com a dissipação de poro-pressão, sendo portanto um fenômeno de difusão. O grau de adensamento é indicado pelo parâmetro adimensional T_v da teoria de Terzaghi, que é o mesmo tanto para o modelo como para o protótipo, sendo diretamente proporcional ao tempo no modelo (t_m) e no protótipo (t_p) e ao coeficiente de adensamento (c_v) .

$$T_{\nu} = \frac{c_{\nu} \cdot t_m}{h_m^2} = \frac{c_{\nu} \cdot t_p}{h_p^2} \tag{1}$$

Como $h_p=Nh_m$, então:

$$t_m = \frac{1}{N^2} t_p \tag{2}$$

Isto significa dizer que, por exemplo, 27 anos de fenômenos ligados a difusão no protótipo podem ser simulados em aproximadamente 24 horas de ensaios centrífugos a 100 gravidades, incluindo o adensamento do solo. Essa grande vantagem da modelagem centrífuga tem sido utilizada largamente com excelentes resultados. No entanto, cuidados especiais devem ser tomados para não generalizar essa conclusão para todos os fenômenos ligados ao tempo. A relaxação, por exemplo, não obedece à relação (2), tendo o tempo de modelo e protótipo os mesmos valores.

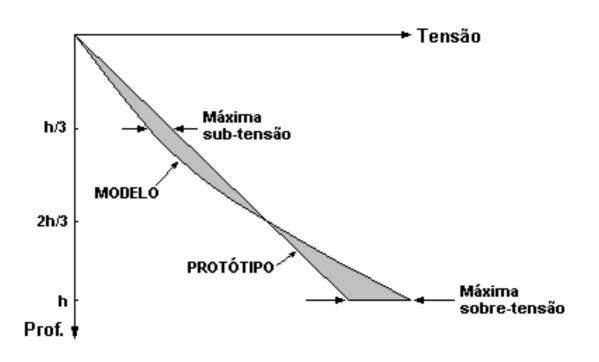


Figura 8 - Comparação entre a variação de tensões no modelo e no protótipo (Taylor, [3]).

3.2 CENTRÍFUGA DO LABORATÓRIO DE GEOTECNIA - COPPE-UFRJ

A mini centrífuga geotécnica de tambor do Laboratório de Geotecnia (Figura 9) possui um motor eletro-hidráulico capaz de bascular o tambor giratório em 90°, mudando o eixo de rotação da posição vertical para a posição horizontal. Essa particularidade permite que o canal de amostras seja trabalhado numa posição mais conveniente para o operador. Essa centrífuga

possui dois sistemas de atuação, capazes de imprimir movimentos independentes radial e circunferencial. Muito embora a centrífuga possa bascular para a posição horizontal ou vertical, seu canal de amostras é rígido, não tendo movimento de balanço, deixando apenas duas alternativas para colocação de solos na caixa de amostras: grumos ou lama.

Figura 9 – Centrífuga Geotécnica (Laboratório de Geotecnia).

3.3 Preparação das Amostras

A técnica de grumos, utilizada com a centrífuga (eixo) na posição horizontal, consiste no particionamento das amostra de solo em pequenos pedaços que são cuidadosamente introduzidos na caixa até que se forme uma camada. Esse processo insere macro-vazios entre os grumos, além dos vazios existentes na estrutura do solo. Por isso todo o sistema torna-se extremamente compressível dificultando o controle e medição dos recalques.

Essa técnica foi descrita por Manivannan [4] como sendo de grande valia na simulação de aterros submersos construídos por deposição de argila em blocos. Os autores também concluíram que o excesso de poro-pressões dentro dos grumos de argila é maior que nos macro-vazios entre os grumos, e que a taxa de dissipação da poro-pressão nos macro-vazios é maior que no interior dos grumos. Dessa forma, os autores propõem que o comportamento de adensamento desse tipo de estrutura será constituído de um rápido colapso inicial, devido ao fechamento dos macro-vazios entre os grumos, seguido de um comportamento de longo prazo, compatível com o adensamento convencional da camada de argila.

A segunda técnica, colocação da amostra de solo em lama, só pode ser realizada com a centrífuga na posição (eixo) vertical, já em movimento. Essa rotação não deverá ser excessiva pois a centrífuga ainda está desbalanceada, nem pequena demais para que a lama não se deposite segundo um ângulo muito inclinado. A aceleração adotada para essa deposição foi de 5g.

Para realização dos ensaios na centrífuga de tambor, optou-se pela adoção do processo de adensamento a partir de lama. As amostras iniciais utilizadas nos ensaios centrífugos apresentados neste projeto foram preparadas numa proporção de 20% bentonita, 80% caulim e umidade inicial da ordem de 200%. As amostras foram preparadas na batedeira industrial apresentada Figura 10. Posteriormente o solo do local do acidente também foi ensaiado.

A Figura 11 apresenta camadas do mesmo material elaboradas a partir dos dois processos após 10 horas de centrifugação a 100g. Os resultados das leituras de forças horizontal e vertical mostraram-se bem mais estáveis com a escolha do segundo processo.

Figura 10 - Homogeneização das amostras: a) mistura da amostra na batedeira; b) verificação da homogeneidade da mistura.

(a) Processo de grumos.

(b) Processo de Lama.

Figura 11 - Diferenças no aspecto da camada final pelos processos de grumo e lama.

A desvantagem principal na utilização do processo de lama é que se torna necessária a centrifugação por um período mais longo para que a camada possa ter consistência antes da parada total da centrífuga, evitando assim que o solo, ainda em estado de lama, escorra para dentro do equipamento causando danos à parte eletro-eletrônica.

Para a introdução da lama, modificações tiveram que ser implementadas ao equipamento, tendo sido desenvolvida uma união giratória que, posicionada no centro de rotação da centrífuga, acima do canal, deposita a lama através de uma mangueira que se apóia da parte giratória da união até a caixa de amostras. Para suportar e guiar a mangueira na caixa de amostras, um quadro especial de acrílico foi desenhado, permitindo uma ampla visualização do interior da caixa. Um funil guia a lama para dentro da união (Figura 12).

Composta de dois conjuntos de rolamentos, a união giratória foi idealizada com um disco de teflon grafitado prensado que impede que a lama entre na parte interna da união, ao mesmo tempo que mantém as partes em giro suave, uma vez que é um material autolubrificante.

O processo de adensamento está representado nas Figuras 13 e 14.

Figura 12 - Colocação da lama na centrifuga com aceleração de 5g.

Figura 13 - Ensaio Centrífugo.

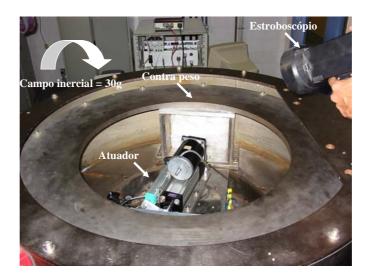


Figura 14 - Ensaio Centrífugo.

3.4 MODELAGEM CONVENCIONAL (1G)

A modelagem convencional 1g como descrito em Almeida et al. [5], ainda em fase de implementação, foi utilizada no presente estudo apenas como fonte de comparação da superfície de ruptura decorrente do movimento horizontal, que é mais nítida do que na centrífuga geotécnica. O solo utilizado nos ensaios preliminares já realizados é o mesmo dos ensaios centrífugos (Caulim e Bentonita) como será descrito no item 5.5. As figuras 15 e 16 mostram o equipamento.

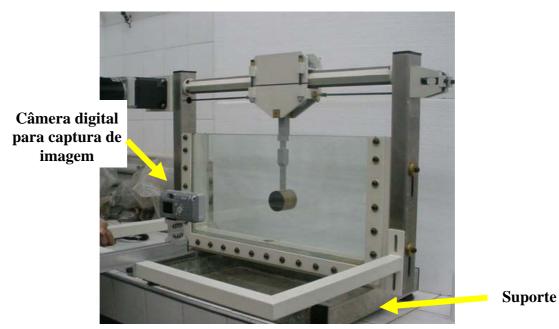


Figura 15 - Equipamento modelagem 1g.

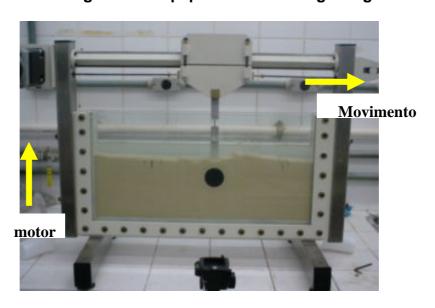


Figura 16 - Ensaio modelagem 1g.

4 Métodos de Análise Estrutural

4.1 Introdução

As análises numéricas foram efetuadas empregando o sistema ANSYS [6], [7] e [8] que é um programa baseado no Método dos Elementos Finitos [9], [10] e [11].

Este programa dispõe de uma vasta biblioteca de elementos. No presente estudo, para uma análise de estado plano de deformação, foram utilizados para representação do solo e do duto elementos quadriláteros com 4 nós (PLANE42) e elementos de contato (TARGET169 e CONTA172) para representação da interface solo-estrutura.

Não será abordada aqui toda a fundamentação teórica e a formulação do MEF, que é encontrada em diversos livros-texto [9], [10] e [11], mas serão comentados de forma sucinta os conceitos básicos e o esquema geral de solução para problemas estáticos não-lineares.

4.2 DISCRETIZAÇÃO ESPACIAL – MÉTODO DOS ELEMENTOS FINITOS

A análise estrutural de sistemas de engenharia requer uma idealização dos mesmos. A definição das variáveis que governam o problema, a formulação de equações de equilíbrio, sua solução, e por fim a interpretação dos resultados constituem as principais etapas de análise

Usualmente se pode descrever o comportamento de um sistema estrutural através de um modelo matemático composto por um conjunto de equações diferenciais e das condições de contorno pertinentes. Para um sistema contínuo, às vezes, uma solução analítica se torna inviável para problemas reais, tornando necessária a sua representação através de um sistema discreto aproximado.

O Método dos Elementos Finitos (MEF) se vale desta idéia para solução sistemática de problemas de engenharia. O contínuo é subdividido em pequenas regiões, o equilíbrio é estabelecido para uma região isoladamente e a solução consiste no cálculo da interação entre as regiões, ou "elementos".

Na formulação de um elemento finito, o que se faz é levantar os deslocamentos que descrevem o comportamento do sistema e estabelecer equações de equilíbrio que correspondam a esses deslocamentos desconhecidos. Se chega, dessa forma, a uma matriz de rigidez do elemento que relaciona valores de forças a deslocamentos unitários nas direções correspondentes consideradas.

Os programas para análise de estruturas permitem a seleção entre diferentes tipos de elementos, cabendo ao analista, escolher aquele que melhor representa o problema a ser resolvido.

4.3 ANÁLISE ESTÁTICA LINEAR

Como resultado do procedimento de discretização do MEF, chega-se às equações de equilíbrio estático linear de um sistema estrutural, referidas no sistema de coordenadas global da estrutura, escritas da seguinte forma matricial:

$$K u = F \tag{3}$$

Esta expressão corresponde a um sistema de equações algébricas lineares, onde a matriz de rigidez global K é a matriz de coeficientes, o vetor de cargas nodais equivalentes F é o vetor de termos independentes, e o vetor de deslocamentos nodais u é o vetor de incógnitas.

Observa-se que o estabelecimento destas equações de equilíbrio globais é efetuado através de operações matriciais de espalhamento e acumulação das matrizes de elementos em uma matriz global, ou seja, a matriz de rigidez global é obtida como o somatório das contribuições das matrizes de rigidez dos elementos:

$$K = \sum_{e} K^{e} \tag{4}$$

Do mesmo modo, o vetor de cargas global é obtido:

$$F = \sum_{e} F^{e} \tag{5}$$

Em resumo, para obter a solução de um problema estrutural estático linear através do MEF, e portanto obter a configuração de equilíbrio, procede-se da seguinte forma:

- Idealização da estrutura como um conjunto de elementos interconectados nas juntas estruturais (nós);
 - Escolha do tipo de elemento a ser empregado;
 - Para cada elemento:
 - ✓ Calcula-se a matriz de rigidez do elemento K^e e o vetor de cargas nodais equivalentes do elemento F^e ;
 - ✓ Efetua-se o espalhamento destas quantidades calculadas para o elemento em matrizes globais, ou seja, acumulam-se os coeficientes de K^e nas posições correspondentes da matriz de rigidez global da estrutura K, e acumulam-se os coeficientes de F^e nas posições correspondentes do vetor de cargas nodais da estrutura F;
 - Introduzem-se as condições de contorno em *K* e *F*;
- Resolve-se o sistema de equações Ku = F utilizando-se uma técnica direta ou iterativa para obter o vetor de deslocamentos nodais u;
- Para cada elemento, a partir dos deslocamentos nodais, calculam-se as deformações, tensões e esforços empregando-se as relações deformação x deslocamento e as equações constitutivas.

4.4 FONTES DE NÃO-LINEARIDADE

Uma estrutura apresenta comportamento não-linear quando não ocorre proporcionalidade entre o carregamento aplicado e a resposta do sistema a este carregamento. Em uma análise linear, a matriz de rigidez e o vetor de cargas externas são considerados independentes do vetor de deslocamentos, e supomos que os materiais empregados apresentam comportamento elástico linear. No caso de uma análise não-linear a matriz de rigidez e o vetor de cargas externas são considerados como função dos deslocamentos, e o material é regido por uma equação constitutiva não-linear.

O comportamento não-linear pode ser de origem geométrica, física ou de contato [8] e [11]. Os tipos de não-linearidade são comentados a seguir:

- Geométrica: Neste caso o comportamento não-linear da estrutura é caracterizado por grandes deslocamentos, mas pequenas deformações específicas e mudanças de curvatura. A mudança de configuração geométrica da estrutura sob ação das cargas, ou as imperfeições geométricas iniciais tais como, desvios da geometria idealizada e / ou excentricidade das cargas aplicadas são efeitos de não-linearidade geométrica considerados na formulação das equações de equilíbrio e na expressão do deslocamento.
- **Física:** A não-linearidade física vem do comportamento do material da estrutura, quando submetido a tensões crescentes, de se plastificar, adquirindo dessa forma, tensões residuais. No caso de ser atingida a tensão de escoamento, a estrutura passa a sofrer deslocamentos sob carga constante levando à ruptura.
- **Contato:** Os elementos de contato por si só já apresentam não-linearidade, isto se deve ao fato da "troca de estado" que acontece durante a análise, ou seja, inicialmente uma região não está em contato com outra e no decorrer da análise passa a estar .

4.5 SOLUÇÕES NÃO-LINEARES UTILIZANDO SOLVERS LINEARES

Para se fazer uma análise não-linear, segundo Crisfield [12], é necessário realizar uma série de análises lineares, e a cada novo ciclo de iterações procura-se obter melhores aproximações. O carregamento aplicado para um novo ciclo será a diferença entre a carga aplicada e as forças resistentes causadas pela deformação da estrutura (vetor de desequilíbrio ou resíduo). Pode-se adotar um método puramente iterativo, que consiste em aplicar o carregamento com seu valor total e realizar iterações sucessivas até atingir o equilíbrio. A Figura 17 ilustra o procedimento para um sistema de um grau de liberdade.

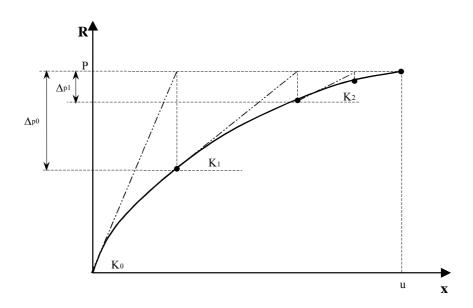


Figura 17 - Método Puramente Iterativo.

A matriz de rigidez (inclinação da curva) é reavaliada a cada nova iteração. O carregamento aplicado será o valor da diferença entre a carga aplicada e o valor da curva (força interna do sistema) para o deslocamento encontrado. Este carregamento é chamado de desequilíbrio da estrutura ao final de uma iteração, ou ainda resíduo.

Em um sistema linear, após a realização de apenas um ciclo, o desequilíbrio é zero. Inclusive ao final da análise não é usual verificar se os esforços dos elementos somados num único vetor global de forças internas equilibram o carregamento aplicado.

Em alguns casos aplica-se o carregamento incrementalmente, ou seja, pode-se aplicar um carregamento P empregando-se 10 incrementos de 0,1P. Para cada novo nível de carga, podem-se realizar iterações ou não. Quando não se realizam iterações, o método é dito puramente incremental. Caso se realizem iterações tem-se um algoritmo incremental-iterativo, conforme mostra a Figura 18.

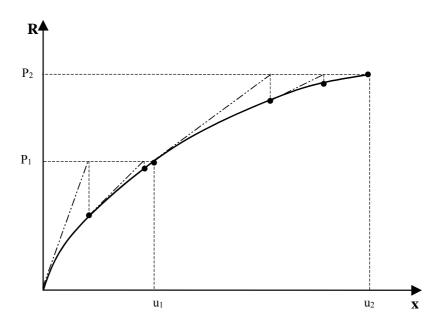


Figura 18 – Método Incremental-Iterativo.

Procedimento Incremental-Iterativo

O processo incremental corresponde à utilização de uma técnica iterativa para a solução de sistemas de equações algébricas não-lineares, tal como o método de Newton-Raphson e suas derivações, que adotam a linearização do vetor das forças desequilibradas baseada na série de Taylor truncada e iteram com a matriz de rigidez tangente. Para isto, as equações de equilíbrio são escritas na seguinte forma:

$$K^{(k-1)} \delta u^{(k)} = F - R^{(k-1)}$$
 (6)

$$u^{(k)} = u^{(k-1)} + \delta u^{(k)} \tag{7}$$

onde k representa um contador de iterações e δu o incremento de deslocamentos entre cada iteração.

No Método de Newton-Raphson padrão (NRP), a matriz de rigidez tangente é reavaliada em todas as iterações, como mostra a Figura 19. Assim, a convergência se torna

mais rápida, no entanto, para sistemas com muitos graus de liberdade, os custos com montagem e decomposição da matriz são elevados, fazendo com que esta opção nem sempre seja a mais eficiente.

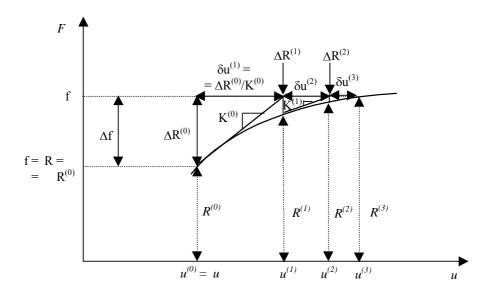


Figura 19 - Procedimento Incremental-iterativo (NRP).

Na variante conhecida como o Método de Newton-Raphson Modificado (NRM), a matriz de rigidez tangente permanece constante durante um certo número de iterações, como mostra a Figura 20. A reavaliação da matriz pode ser feita apenas no início de cada passo da análise, ou ao início de passos escolhidos arbitrariamente. Com isso, temos um menor custo computacional para sistemas com muitos graus de liberdade, pois são evitadas várias reavaliações e decomposições de matrizes tangentes.

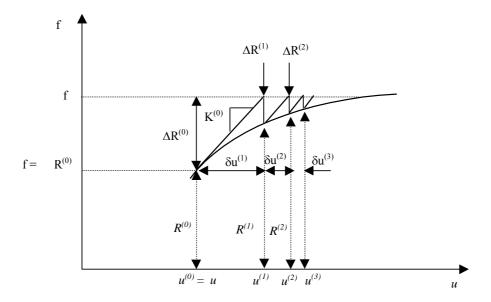


Figura 20 - Procedimento Incremental-iterativo (NRM).

Em suma, em uma análise não-linear, a solução não pode ser diretamente obtida por um grupo de equações lineares, a matriz de rigidez deve ser atualizada a cada passo de carga. Apesar disso uma estrutura que apresente fontes de não-linearidade pode ser analisada utilizando-se uma série iterativa de aproximações lineares, mas com as devidas correções.

O *software* utilizado no presente projeto (ANSYS) utiliza-se do processo iterativo de Newton-Raphson. No *software* cada iteração é denominada de "iteração de equilíbrio".

O Método de Newton-Raphson converge (não necessariamente) a uma solução usando a equação:

$$[K_i] \{ \delta u_i \} = \{ F_i \} - \{ R_i \}$$

$$(8)$$

onde:

 $[K_i]$ = Matriz de Rigidez Tangente

 $\{\delta u_i\}$ = Incremento de deslocamento

 $\{F_i\}$ = Vetor de Forças Externas aplicadas

 $\{R_i\}$ = Vetor de Forças Internas

Para estruturas não-lineares, é necessária mais de uma iteração de Newton – Raphson para se obter a solução. Desta forma procedemos da seguinte forma:

- 1) Assumimos um deslocamento inicial, $\{u_i\}$. Na primeira iteração tem-se que $\{u_0\}=0$;
- 2) Atualiza-se a matriz de rigidez tangente $[K_i]$ e o vetor das forças internas $\{R_i\}$ para a nova configuração $\{u_i\}$;
- 3) Calcula-se $\{\Delta u_i\}$ através da equação de Newton-Raphson $[K_i^T]\{\Delta u_i\} = \{F^a\} \{F_i^{nr}\};$
- 4) Adiciona-se $\{\delta u_i\}$ ao $\{u_i\}$ com o intuito de se obter a nova aproximação $\{u_{i+1}\}=\{u_i\}+\{\delta u_i\}$;
 - 5) Repete-se os passos de 2 a 4 até a obtenção da convergência.

4.6 MODELO DE CONTATO

Superfícies que estão em contato apresentam as seguintes características [8]:

- ➤ Não há penetração entre elas;
- Podem ser transmitidas forças normais de compressão e forças de atrito entre as superfícies em contato;
- Normalmente não são transmitidas forças normais de tração;
- As superfícies estão livres para se separarem em qualquer instante da análise.

O elemento de contato por si só já apresenta uma não-linearidade, isto significa que a rigidez do sistema depende da existência ou não do contato.

Tanto a rigidez normal das superfícies em contato quanto a rigidez tangencial dependem substancialmente da existência ou não do contato entre as mesmas. Mudanças repentinas e de grande intensidade na rigidez dos elementos podem causar dificuldades de convergência.

O critério de Coulomb é usado para modelar a máxima resistência ao deslizamento existente entre o solo e o duto.

A tensão máxima de atrito (τ_{max}) é assumida como constante e proporcional à resistência não drenada do solo (S_u), assim independente da tensão normal.

$$COHE = \alpha.Su$$
 (9)

$$\tau_{\text{max}} = COHE + \mu F \tag{10}$$

Considerando $\mu = 0$ tem-se:

$$\tau_{\text{max}} = COHE \tag{11}$$

Um valor de 0.2 para α é considerado o mais apropriado para as análises, que é a metade do valor utilizado por Randolph [13] para modelagem de atrito ao redor de estacas.

Randolph [13] observou que a resistência ao movimento lateral é originada principalmente por forças normais, consequentemente a força de atrito nos elementos de contato, consideradas nas análises em questão, irão ter pouca influência na resultante das forças geradas pelo solo.

4. Parâmetros do Contato					
	use FKN entre 1 e 10 e FTOLN igual a 0.1				
	$\mu = 0$	COHE= 0.2	2 x Su e TAU	MAX = COHE	

5 MODELOS NUMÉRICOS POR ELEMENTOS FINITOS

5.1 TIPOS DE ELEMENTOS

Os elementos utilizados para as análises numéricas foram: PLANE42, TARGE169 e CONTA172.

PLANE42 foram elementos usados em estado plano de deformação para modelar o solo, o concreto e o aço do duto. O elemento é definido por quatro nós e possui dois graus de liberdade por nó: translações nas direções X e Y.

TARGE169 são elementos utilizados para representar a superfície de contato do duto. O duto é considerado rígido no contexto desta análise. A superfície deformável do solo em contato com o duto é definida pelos elementos CONTA172.

As características dos elementos, bem como suas constantes, foram bastante estudadas para realização das análises mas não cabe ao escopo deste projeto.

5.2 CONDIÇÕES DE CONTORNO

Cada lado da malha foi fixado horizontalmente e a base fixada verticalmente, como mostrado na Figura 21. Estudos iniciais foram feitos para a delimitação do modelo a fim de não influenciar os resultados das análises. Efeitos de bordo foram verificados e considerados mínimos.

Os itens seguintes descrevem os critérios utilizados para a obtenção do modelo numérico para as várias profundidades de enterramento.

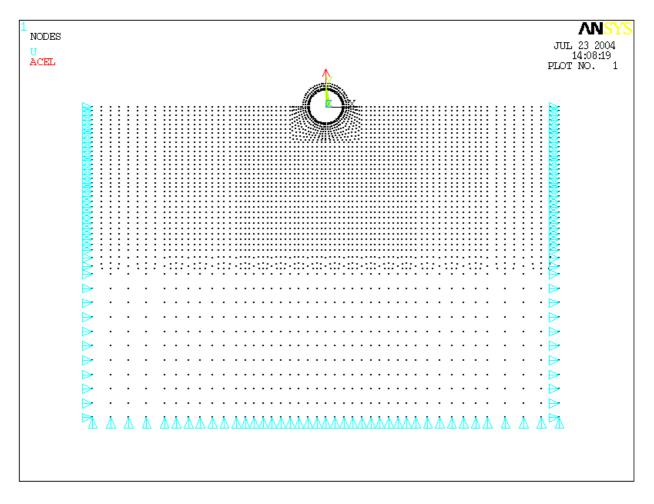


Figura 21 - Condições de Contorno.

5.3 Modelos Discretizados

Foram modeladas profundidades de relação (H/D) iguais a -50%, -18%, 9%, 25%, 50%, 100% onde H é a distância da superfície do solo ao topo do duto, e D é o diâmetro externo do duto em questão. Essas relações correspondem aproximadamente aos ensaios realizados na centrífuga geotécnica.

A malha foi inicialmente construída com -50%, condição de semi-enterramento. Visando minimizar as influências das condições de contorno, esta malha apresenta dimensões de 8 (oito) diâmetros de profundidade mais uma pequena área de transição por 12 (doze) diâmetros de largura. O modelo foi dividido em áreas como representado na Figura 22 (dimensões em milímetros). Para obtenção da malha, as áreas regulares foram divididas em elementos de iguais dimensões. A camada de transição para aumento dos elementos e as proximidades do duto, que acumulam deformações, apresentam maior densidade de malha.

As propriedades dos materiais foram definidas em cada área. Estas áreas foram combinadas horizontalmente representando camadas, como será descrito na seção seguinte.

Para as demais porcentagens de enterramento adicionaram-se camadas acima do nível do duto mantendo a configuração anterior (Figuras 23 a 34). Esse procedimento visou uma otimização do trabalho, acrescentando pouco ao tempo de análise.

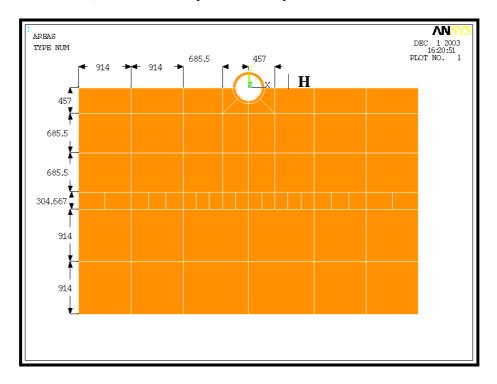


Figura 22 – Áreas.

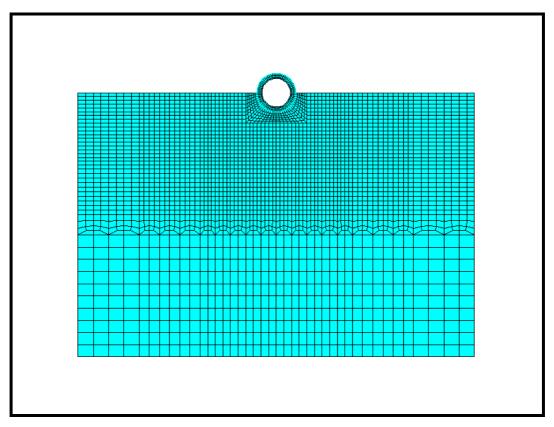


Figura 23 – Malha de elementos finitos (- 50%).

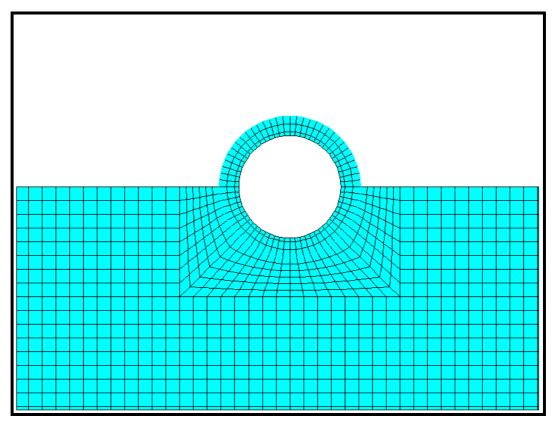


Figura 24 – Detalhe da malha de elementos finitos (- 50%).

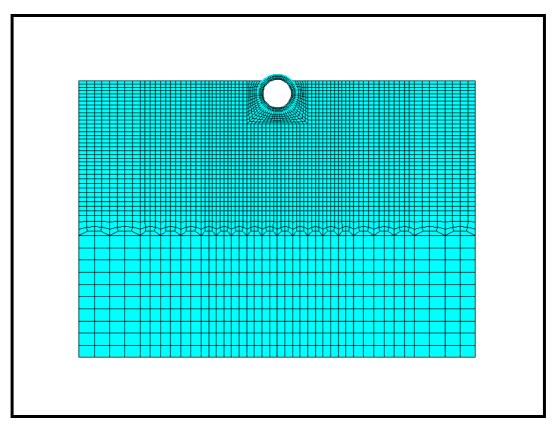


Figura 25 – Malha de elementos finitos (- 18%).

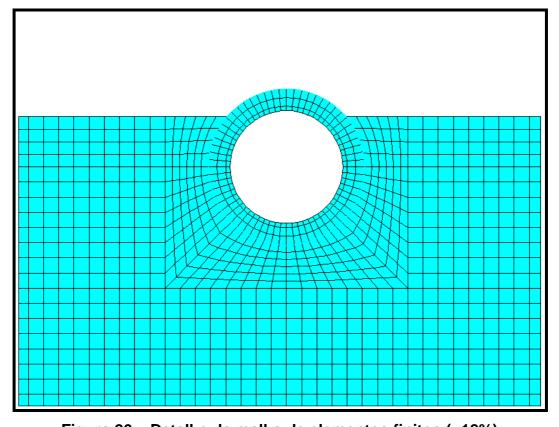


Figura 26 – Detalhe da malha de elementos finitos (- 18%).

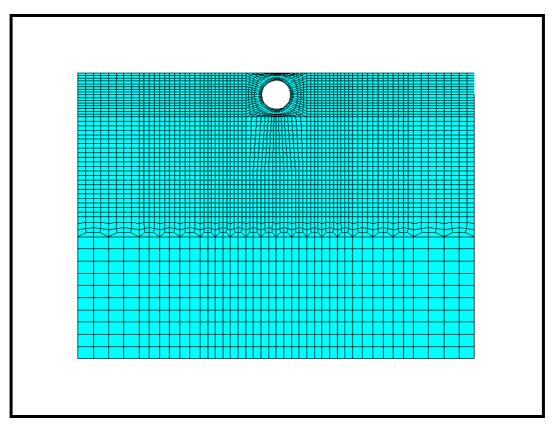


Figura 27 – Malha de elementos finitos (9%).

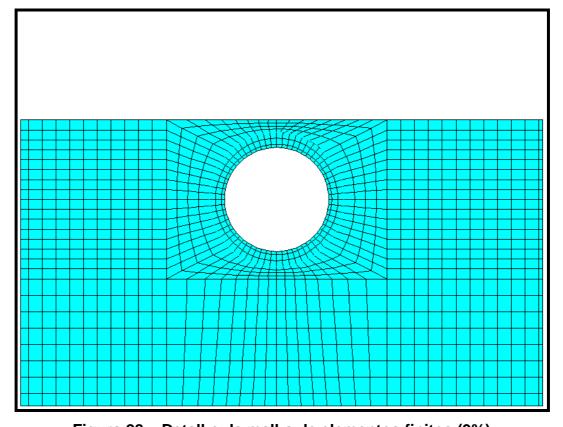


Figura 28 – Detalhe da malha de elementos finitos (9%).

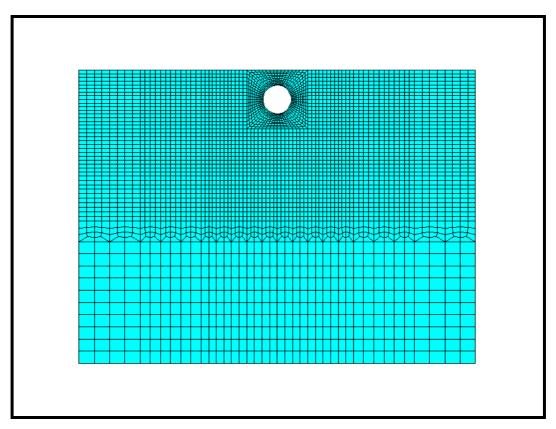


Figura 29 – Malha de elementos finitos (25%).

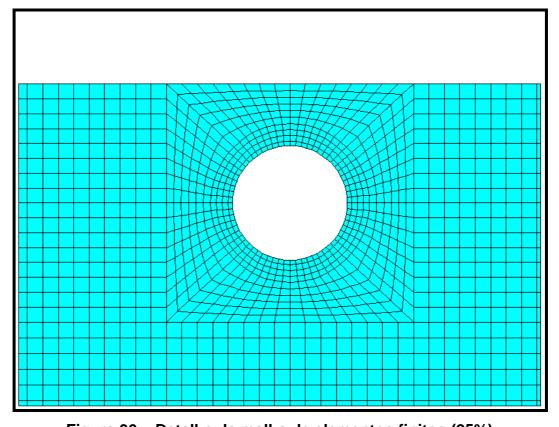


Figura 30 – Detalhe da malha de elementos finitos (25%).

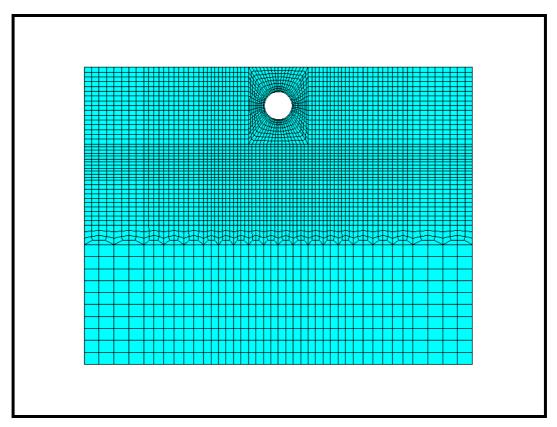


Figura 31 – Malha de elementos finitos (50%).

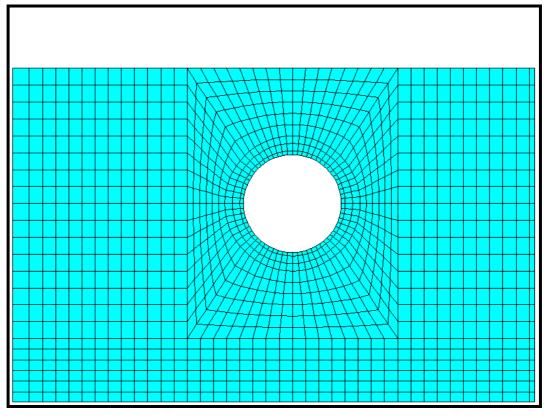


Figura 32 – Detalhe da malha de elementos finitos (50%).

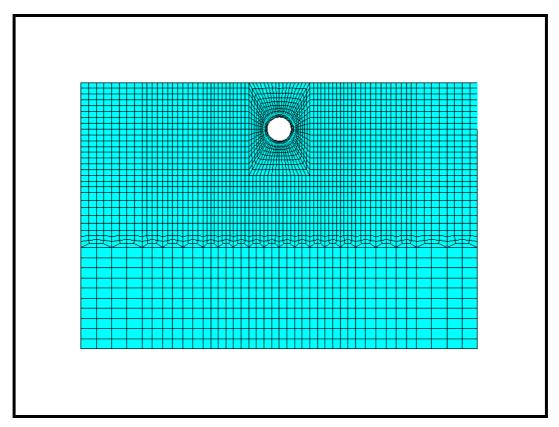


Figura 33 – Malha de elementos finitos (100%).

Figura 34 – Detalhe da malha de elementos finitos (100%).

As malhas possuem entre 3440 (malha com -50% de enterramento) e 4000 (malha com 100% de enterramento) e lementos e aproximadamente 3630 (malha com -50% de enterramento) e 4200 (malha com 100% de enterramento) nós.

A dimensão dos elementos variam, aproximadamente, de 40mm x 30mm na área de contato entre solo e duto e 180mm x 230mm na região mais afastada do modelo.

5.4 MATERIAIS UTILIZADOS

Foram definidos sete materiais diferentes. Dois para o duto (concreto com módulo de elasticidade $E = 2.1x10^{10}$ (Pa) e coeficiente de Poisson v = 0.3 e aço com módulo de elasticidade $E = 2.1x10^{11}$ (Pa) e coeficiente de Poisson v = 0.3) e os outros cinco representando a variação da resistência do solo com a profundidade. As propriedades dos materiais do solo variam de acordo com a análise que esta sendo realizada (Caulim e Bentonita (CB), Baía de Guanabara (GB), Baía de Guanabara Experimental(GE)) (Figura 35). As propriedades das camadas do solo foram definidas na linha média de cada camada. As equações das respectivas camadas de solos analisados estão apresentadas no item 5.5.

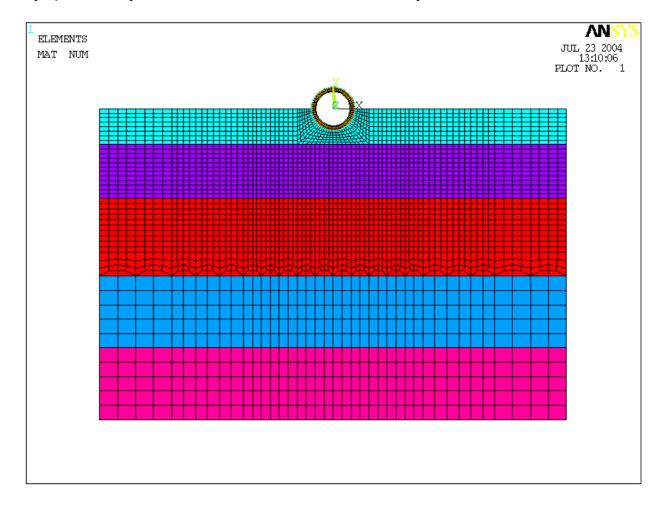


Figura 35 - Materiais.

5.5 TIPOS DE SOLOS ANALISADOS

Caulim e Bentonita (CB):

Mistura realizada em laboratório com 80% de Caulim e 20% de Bentonita com umidade de 200%.

CAUL	CAULIM E BENTONITA (CB): plastificação perfeita							
	Su (kPa) =0.13 x (4.88 x prof(m)), σ_y = 2Su (x1000 passando para Pa)							
	Eu = 100 Su							
	Coeficiente de Poisson 0.49999 (não podemos usar 0.5 por razões numéricas)							
	Todo o solo tem densi	dade = 1500 l	kg/m3					

Baía de Guanabara (GB):

Material ensaiado no campo nas proximidades do local do acidente.

BAÍA DE							
	Pa)						
	Eu = 100 Su						
	Coeficiente de Poissor	า 0.49999					
	Todo solo tem densida	ide = 1400kg/	m³ (14kN/m3)				

Baía de Guanabara Experimental (GE):

Mistura realizada em laboratório com material vindo do local do acidente.

BAÍA DE GUANABARA EXPERIMENTAL (GE): plastificação perfeita							
Su (kPa) = 1.4 xprof (x ²							
Eu = 100 Su	Eu = 100 Su						
Coeficiente de Poissor	Coeficiente de Poisson 0.49999						
Todo solo tem densida	ade = 1400kg/	m³ (14kN/m3)					

As análises foram separadas em grupos que serão definidos no item 6.

As Tabelas 1 a 2 (para o grupo 1) e 3 a 4 (para o grupo 2) apresentam as seguintes informações relevantes:

5.5.1 Grupo 1

Caulim e Bentonita (CB):

Análise N	o:	1				
Tipo:		СВ				
D:		0,5572	m			
H/D:		-50%		meio enter	rado	
Proprieda	des das c	amadas d	e solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,2285	0,457	289,9208	28992,08	1500	0,49999
2	0,79975	0,6855	1014,723	101472,3	1500	0,49999
3	1,63762	0,990237	2077,81	207781	1500	0,49999
4	2,58974	0,914	3285,858	328585,8	1500	0,49999
5	3,50374	0,914	4445,542	444554,2	1500	0,49999
		3,960737				
Parâmetro	os de con	tato (Could	omb)			
μ	0					
COHE	17,6744	Pa	(0.2Su)			
TAUMAX	17,6744	Pa				
Rigidez d	o contato					
FKN	5					
FTOLN	0,1					

Tabela 1a – Caulim e Bentonita (H/D=-50%).

Análise N	0:	3				
Tipo:		СВ				
D:		0,5572	m			
H/D:		9%				
Proprieda	des das ca					
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,16465	0,3293	208,9079	20890,79	1500	0,49999
2	0,90055	1,1425	1142,618	114261,8	1500	0,49999
3	1,966884	0,990167	2495,582	249558,2	1500	0,49999
4	2,918967	0,914	3703,585	370358,5	1500	0,49999
5	3,832967	0,914	4863,269	486326,9	1500	0,49999
		4,289967				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	41,71155	Ра	(0.2Su)			
TAUMAX	41,71155	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 1b - Caulim e Bentonita (H/D=9%).

Analise No	0:	4				
Tipo:		СВ				
D:		0,5572	m			
H/D:		25%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,209475	0,41895	265,7819	26578,19	1500	0,49999
2	0,9902	1,1425	1256,366	125636,6	1500	0,49999
3	2,056534	0,990167	2609,33	260933	1500	0,49999
4	3,008617	0,914	3817,333	381733,3	1500	0,49999
5	3,922617	0,914	4977,016	497701,6	1500	0,49999
		4,379617				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	53,02315	Pa	(0.2Su)			
TAUMAX	53,02315	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 1c - Caulim e Bentonita (H/D=25%).

Analise No	o:	5				
Tipo:		СВ				
D:		0,5572	m			
H/D:		50%				
Proprieda		amadas de				
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,2793	0,5586	354,3758	35437,58	1500	0,49999
2	1,12985	1,1425	1433,554	143355,4	1500	0,49999
3	2,196184	0,990167	2786,518	278651,8	1500	0,49999
4	3,148267	0,914	3994,521	399452,1	1500	0,49999
5	4,062267	0,914	5154,204	515420,4	1500	0,49999
		4,519267				
Parâmetro	s de cont	ato (Coulo	mb)			
μ	0					
COHE	70,69754	Pa	(0.2Su)			
TAUMAX	70,69754	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 1d - Caulim e Bentonita (H/D=50%).

Analise No	o:	6				
Tipo:		СВ				
D:		0,5572	m			
H/D:		100%				
Proprieda	des das ca	amadas de	solo			
_	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,41895	0,8379	531,5638	53156,38	1500	0,49999
2	1,40915	1,1425	1787,93	178793	1500	0,49999
3	2,475484	0,990167	3140,893	314089,3	1500	0,49999
4	3,427567	0,914	4348,897	434889,7	1500	0,49999
5	4,341567	0,914	5508,58	550858	1500	0,49999
		4,798567				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	106,0463	Pa	(0.2Su)			
TAUMAX	106,0463	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 1e - Caulim e Bentonita (H/D=100%).

Baía de Guanabara (GB):

Analise N	o:	7				
Tipo:		GB				
D:		0,5572	m			
H/D:		-50%				
Proprieda	des das c	amadas d	e solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,2285	0,457	2995,139	299513,9	1400	0,49999
2	0,79975	0,6855	3482,987	348298,7	1400	0,49999
3	1,63762	0,990237	4198,526	419852,6	1400	0,49999
4	2,58974	0,914	5011,635	501163,5	1400	0,49999
5	3,50374	0,914	5792,191	579219,1	1400	0,49999
		3,960737				
Parâmetro	os de con	tato (Could	omb)			
μ	0					
COHE	291,896	Pa	(0.2Su)			
TAUMAX	291,896	Ра				
Rigidez d	o contato					
FKN	5					
FTOLN	0,1					

Tabela 2a – Baía de Guanabara (H/D=-50%).

Analise No	0:	9				
Tipo:		G				
D:		0,5572	m			
H/D:		9%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,16465	0,3293	2940,611	294061,1	1400	0,49999
2	0,90055	1,1425	3569,07	356907	1400	0,49999
3	1,966884	0,990167	4479,719	447971,9	1400	0,49999
4	2,918967	0,914	5292,798	529279,8	1400	0,49999
5	3,832967	0,914	6073,354	607335,4	1400	0,49999
		4,289967				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	308,0751	Pa	(0.2Su)			
TAUMAX	308,0751	Pa				
Rigidez de	o contato					
FKN	5					
FTOLN	0,1					

Tabela 2b - Baía de Guanabara (H/D=9%).

Analise No	0:	10				
Tipo:		GB				
D:		0,5572	m			
H/D:		25%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,209475	0,41895	2978,892	297889,2	1400	0,49999
2	0,9902	1,1425	3645,631	364563,1	1400	0,49999
3	2,056534	0,990167	4556,28	455628	1400	0,49999
4	3,008617	0,914	5369,359	536935,9	1400	0,49999
5	3,922617	0,914	6149,915	614991,5	1400	0,49999
		4,379617				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	315,6887	Pa	(0.2Su)			
TAUMAX	315,6887	Pa				
Rigidez de	o contato					
FKN	5					
FTOLN	0,1					

Tabela 2c - Baía de Guanabara (H/D=25%).

Analise No	o:	11				
Tipo:		G				
D:		0,5572	m			
H/D:		50%				
Proprieda						
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,2793	0,5586	3038,522	303852,2	1400	0,49999
2	1,12985	1,1425	3764,892	376489,2	1400	0,49999
3	2,196184	0,990167	4675,541	467554,1	1400	0,49999
4	3,148267	0,914	5488,62	548862	1400	0,49999
5	4,062267	0,914	6269,176	626917,6	1400	0,49999
		4,519267				
Parâmetro	s de cont	ato (Coulo	mb)			
μ	0					
COHE	327,5849	Ра	(0.2Su)			
TAUMAX	327,5849	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 2d - Baía de Guanabara (H/D=50%).

Analise No	o:	12				
Tipo:		G				
D:		0,5572	m			
H/D:		100%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,41895	0,8379	3157,783	315778,3	1400	0,49999
2	1,40915	1,1425	4003,414	400341,4	1400	0,49999
3	2,475484	0,990167	4914,063	491406,3	1400	0,49999
4	3,427567	0,914	5727,142	572714,2	1400	0,49999
5	4,341567	0,914	6507,698	650769,8	1400	0,49999
		4,798567				
Parâmetro	s de cont	ato (Coulo	mb)			
μ	0					
COHE	351,3773	Pa	(0.2Su)			
TAUMAX	351,3773	Pa				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 2e - Baía de Guanabara (H/D=100%).

5.5.2 Grupo 2

Caulim e Bentonita (CB):

Analise N	0:	1				
Tipo:		СВ				
D:		0,457	m			
H/D:		-50%				
Proprieda	desdasd	amadas d	e solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,1777	0,3554	225,4658	11273,29	1500	0,49999
2	0,62195	0,5331	789,1302	39456,51	1500	0,49999
3	1,27352	0,770033	1615,838	80791,89	1500	0,49999
4	2,01393	0,7108	2555,278	127763,9	1500	0,49999
5	2,72473	0,7108	3457,141	172857,1	1500	0,49999
		3,080133				
Parâmetro	os de con	tato (Coulc	omb)			
μ	0					
COHE	14,496	Ра	(0.2Su)			
TAUMAX	14,496	Pa				
Rigidez d	o contato					
FKN	5					
FTOLN	0,1					

Tabela 3a - Caulim e Bentonita (H/D=-50%).

Analise No	o:	2				
Tipo:		СВ				
D:		0,457	m			
H/D:		-18%				
Duamiada		!! .				
Proprieda		amadas de		_	D	
	Profundida	Espessura			Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,251139	0,502277	318,6445	15932,23	1500	0,49999
2	0,768827	0,5331	975,4877	48774,38	1500	0,49999
3	1,420394	0,770033	1802,195	90109,76	1500	0,49999
4	2,16081	0,7108	2741,636	137081,8	1500	0,49999
5	2,87161	0,7108	3643,499	182174,9	1500	0,49999
		3,22701				
Parâmetro	s de cont	ato (Coulo	mb)			
μ	0					
COHE	23,77351	Ра	(0.2Su)			
TAUMAX	23,77351	Ра				
Rigidez do contato						
FKN	5					
FTOLN	0,1					

Tabela 3b - Caulim e Bentonita (H/D=-18%).

Analise No	0:	4				
Tipo:		СВ				
D:		0,457	m			
H/D:		25%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,34275	0,6855	434,8812	21744,06	1500	0,49999
2	0,958375	0,54575	1215,986	60799,31	1500	0,49999
3	1,616267	0,770033	2050,719	102535,9	1500	0,49999
4	2,356683	0,7108	2990,159	149508	1500	0,49999
5	3,067483	0,7108	3892,022	194601,1	1500	0,49999
		3,422883				
Eixo	0,34275	Su	217,4406			

Tabela 3c - Caulim e Bentonita (H/D=25%).

Analise No	o:	5				
Tipo:		СВ				
D:		0,457	m			
H/D:		50%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,457	0,914	579,8416	28992,08	1500	0,49999
2	1,12975	0,4315	1433,427	71671,34	1500	0,49999
3	1,730517	0,770033	2195,679	109784	1500	0,49999
4	2,470933	0,7108	3135,12	156756	1500	0,49999
5	3,181733	0,7108	4036,983	201849,1	1500	0,49999
		3,537133				
Eixo	0,457	Su	289,9208			

Tabela 3d - Caulim e Bentonita (H/D=50%).

Baía de Guanabara Experimental (GE):

Analise No	0:	6				
Tipo:		GE				
D:		0,457	m			
H/D:		-50%				
Proprieda		amadas d				
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,1777	0,3554	497,56	24878	1400	0,49999
2	0,62195	0,5331	1741,46	87073	1400	0,49999
3	1,27352	0,770033	3565,846	178292,3	1400	0,49999
4	2,01393	0,7108	5639,012	281950,6	1400	0,49999
5	2,72473	0,7108	7629,252	381462,6	1400	0,49999
		3,080133				
Parâmetro	os de con	tato (Coulc	omb)			
μ	0					
COHE	31,99	Ра	(0.2Su)			
TAUMAX	31,99	Pa				
Rigidez d	o contato					
FKN	5					
FTOLN	0,1					

Tabela 4a – Baía de Guanabara Experimental (H/D=-50%).

Analise No	D:	7				
Tipo:	_	GE				
D:		0,457	m			
H/D:		-18%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,251139	0,502277	703,1878	35159,39	1400	0,49999
2	0,768827	0,5331	2152,716	107635,8	1400	0,49999
3	1,420394	0,770033	3977,102	198855,1	1400	0,49999
4	2,16081	0,7108	6050,268	302513,4	1400	0,49999
5	2,87161	0,7108	8040,508	402025,4	1400	0,49999
		3,22701				
Parâmetro	os de cont	ato (Coulo	mb)			
μ	0					
COHE	52,4636	Pa	(0.2Su)			
TAUMAX	52,4636	Pa				
Rigidez de	o contato					
FKN	5					
FTOLN	0,1					

Tabela 4b - Baía de Guanabara Experimental (H/D=-18%).

Analise No	o:	9				
Tipo:		GE				
D:		0,457	m			
H/D:		25%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Ра	kg/m3	
1	0,34275	0,6855	959,7	47985	1400	0,49999
2	0,958375	0,54575	2683,45	134172,5	1400	0,49999
3	1,616267	0,770033	4525,546	226277,3	1400	0,49999
4	2,356683	0,7108	6598,712	329935,6	1400	0,49999
5	3,067483	0,7108	8588,952	429447,6	1400	0,49999
		3,422883				
Eixo	0,34275	Su	479,85			

Tabela 4c - Baía de Guanabara Experimental (H/D=25%).

Analise No	0:	10				
Tipo:		GE				
D:		0,457	m			
H/D:		50%				
Proprieda	des das ca	amadas de	solo			
	Profundida	Espessura	Tensão de	Eu	Densidade	υ
	m	m	Pa	Pa	kg/m3	
1	0,457	0,914	1279,6	63980	1400	0,49999
2	1,12975	0,4315	3163,3	158165	1400	0,49999
3	1,730517	0,770033	4845,446	242272,3	1400	0,49999
4	2,470933	0,7108	6918,612	345930,6	1400	0,49999
5	3,181733	0,7108	8908,852	445442,6	1400	0,49999
		3,537133				
Eixo	0,457	Su	639,8			

Tabela 4d - Baía de Guanabara Experimental (H/D=50%).

6 PROCEDIMENTO DE ANÁLISE

6.1 ESTRATÉGIA DE ANÁLISE

A partir das malhas de elementos finitos apresentadas na seção anterior, foram realizadas análises não-lineares geométricas, elasto-plásticas e de contato.

O duto é deslocado lateralmente em até 1 (um) diâmetro (essa relação foi escolhida pois percebeu-se com resultados preliminares que o solo se plastifica próximo da relação 0,4) e são medidas forças horizontais e verticais resultantes agindo sobre o entorno do duto.

As unidades adotadas para análises foram: m, kg, N, Pa. As análises foram separadas em dois grupos como descrito a seguir.

6.1.1 Grupo 1

O processo de solução foi controlado seguindo as opções:

- Efeitos de grandes deformações incluído;
- Os incrementos de carga são automáticos, o número inicial de *substeps* é definido como 100 mas o programa tem a flexibilidade de resolver 1000 *substeps* para atingir o deslocamento prescrito;
- O fator tempo aumenta de 0 a 1 e representa a proporção do deslocamento atingido;
- ANSYS escolhe o solver mais apropriado;
- O número máximo de iterações por *substep* é escolhido pelo programa;
- ANSYS realiza bisseção no substep se a deformação plástica está acima de 0.15, ou se o número de iterações para a convergência da solução for muito alto;
- O critério de convergência da solução é o de equilíbrio de força;
- Elementos de contato utilizado em todas as análises;
- Tipos de solos analisados: CB e GB;
- Considera-se a camisa de concreto (D = 0.56m);
- Porcentagens de enterramento analisadas: -50%, 9%, 25%, 50%, 100%.

6.1.2 Grupo 2

O processo de solução foi controlado seguindo as opções:

- Efeitos de grandes deformações NÃO incluído;
- Os incrementos de carga são automáticos, o número inicial de substeps é definido como 100 mas o programa tem a flexibilidade de resolver 1000 substeps para atingir o deslocamento prescrito;
- O fator tempo aumenta de 0 a 1 e representa a proporção do deslocamento atingido;
- ANSYS escolhe o solver mais apropriado;
- O número máximo de iterações por *substep* é escolhido pelo programa;
- ANSYS realiza bisseção no substep se a deformação plástica está acima de 0.15, ou se o número de iterações para a convergência da solução for muito alto;
- O critério de convergência da solução é o de equilíbrio de força;
- Não há elemento de contato nas análises onde o duto está totalmente enterrado;
- Tipos de solos analisados: CB e GE;
- Não se considera a camisa de concreto (D = 0.457);
- Porcentagens de enterramento analisadas: -50%, -18%, 25%, 50%.

7.1 Introdução

Os resultados podem ser separados em dois grupos, como explicitado na seção anterior. No primeiro grupo serão relatadas análises com elementos de contato em todos os modelos. Devido a problemas de convergência nas análises com elementos de contato foi proposta uma alternativa onde duto e solo estão ligados. Forças de tração são significativas no segundo grupo (tentativa de simular a sucção). Nesta proposta alternativa (sem elemento de contato) visou-se somente uma comparação da superfície de ruptura com o modelo 1g (análise qualitativa), seus resultados em termos quantitativos pouco representam.

Nas Figuras 36 a 43 encontram-se os gráficos de deslocamentos normalizados em relação ao diâmetro do duto x forças normalizadas em relação à resistência não drenada do solo (Su) na posição do eixo do duto e diâmetro do duto (direções X e Y) de todos os tipos de solos estudados. Os gráficos normalizados de resultados de ensaios centrífugos são também apresentados (Figuras 44 e 45).

Os apêndices A e B mostram, respectivamente, os resultados (configuração deformada e deslocamento horizontal) das análises numéricas e uma planilha padrão para coleta de resultados.

7.2 RESULTADOS NUMÉRICOS GRUPO 1

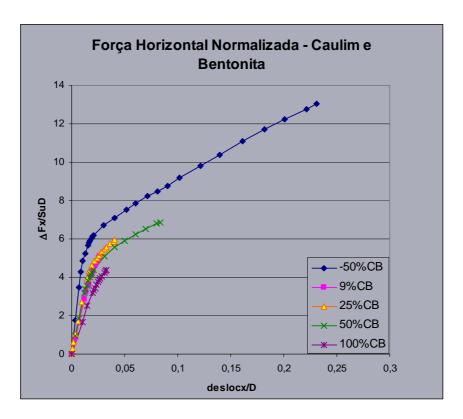


Figura 36 – Força Horizontal Normalizada (Caulim e Bentonita).

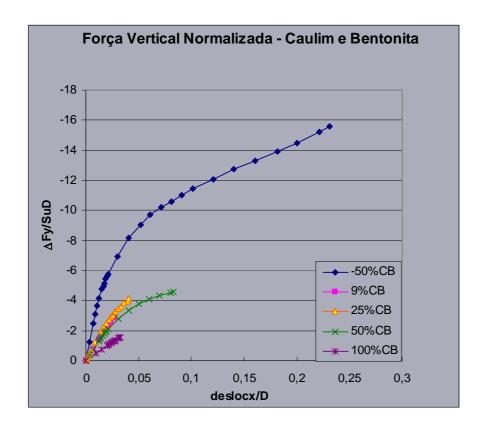


Figura 37 – Força Vertical Normalizada (Caulim e Bentonita).

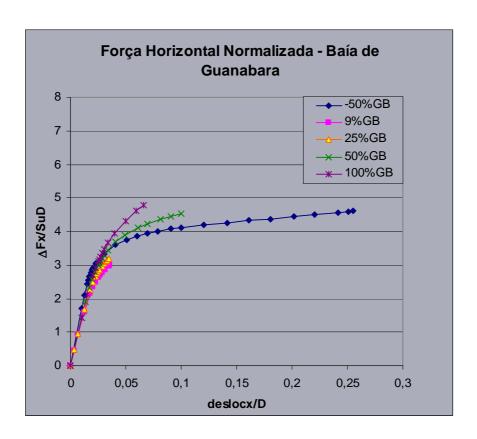


Figura 38 – Força Horizontal Normalizada (Baía de Guanabara).

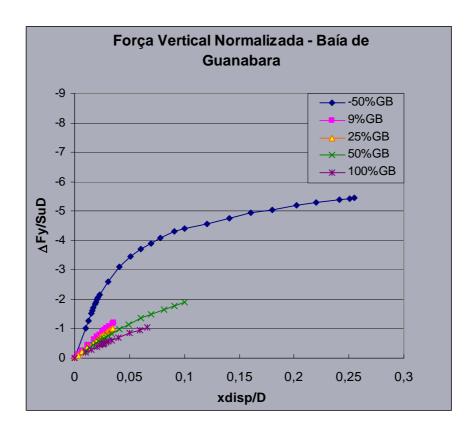


Figura 39 – Força Vertical Normalizada (Baía de Guanabara).

7.3 RESULTADOS NUMÉRICOS GRUPO 2

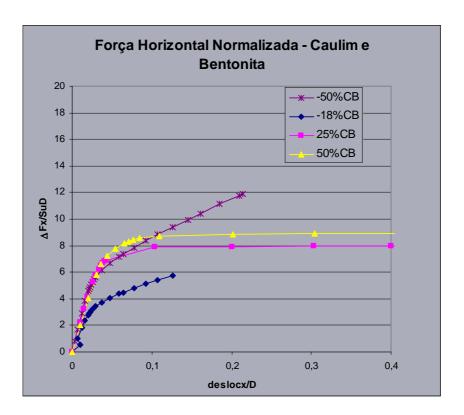


Figura 40 – Força Horizontal Normalizada (Caulim e Bentonita).

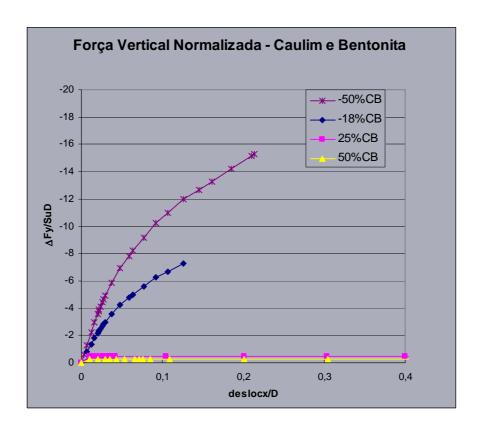


Figura 41 – Força Vertical Normalizada (Caulim e Bentonita).

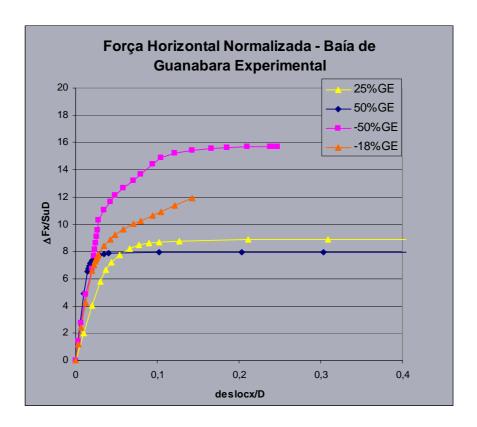


Figura 42 – Força Horizontal Normalizada (Baía de Guanabara Experimental).

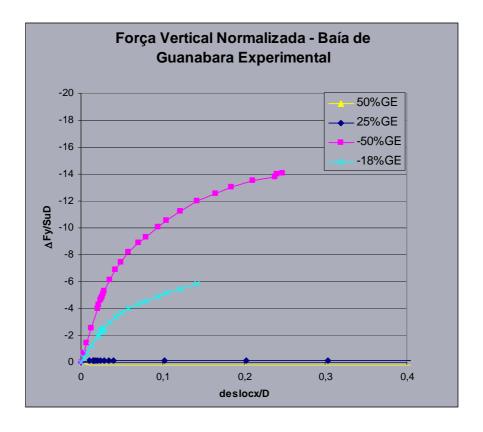


Figura 43 – Força Vertical Normalizada (Baía de Guanabara Experimental).

7.4 RESULTADOS CENTRÍFUGOS

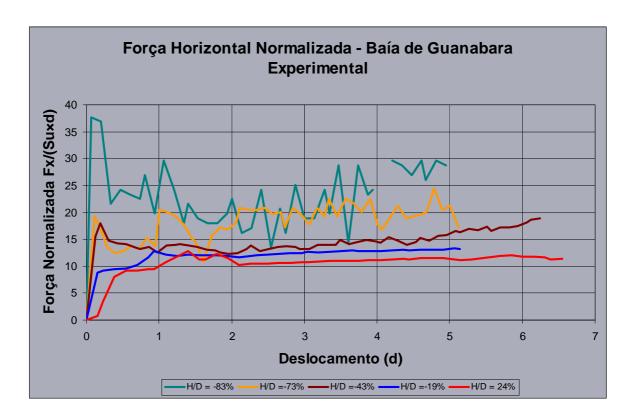


Figura 44 - Força Horizontal Normalizada (Baía de Guanabara Experimental).

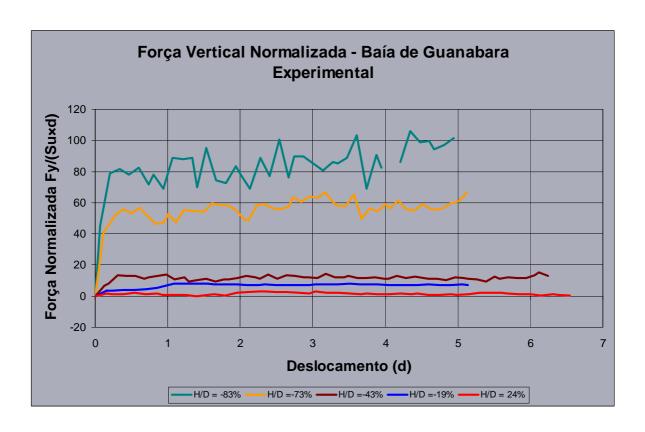


Figura 45 - Força Vertical Normalizada (Baía de Guanabara Experimental).

8 COMPARAÇÃO DOS RESULTADOS

A comparação realizada foi somente para o solo denominado de Baía de Guanabara Experimental (GE) (vide item 5.5).

Percebe-se significativa semelhança nos resultados, apesar de todas as simplificações adotadas. A reta ao se tornar paralela ao eixo das abscissas representa a plastificação do material, ou seja, não há mais nenhum acréscimo de resistência ao movimento pelo deslocamento do duto. Analisando os gráficos nota-se que a resistência mobilizada pelo solo atingiu valores máximos da mesma ordem de grandeza tanto nas análises numéricas quanto nas experimentais (Figuras 46 e 47). Por exemplo para a análise com enterramento de -50% (-43% no caso da análise centrífuga) a força horizontal normalizada se estabilizou entre 12 e 16 em ambos os casos.

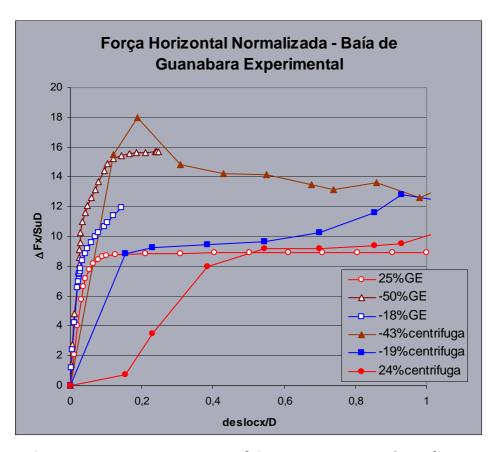


Figura 46 – Modelagem Numérica x Modelagem Centrífuga.

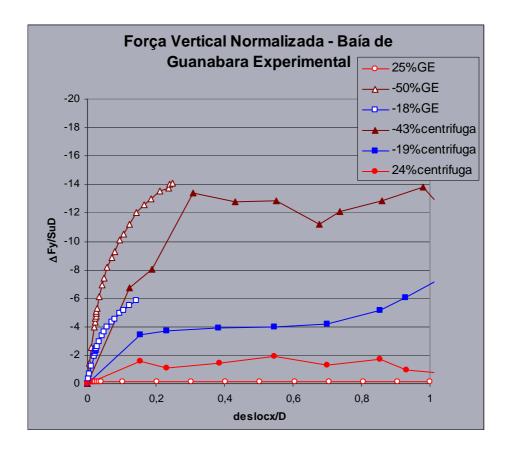


Figura 47 – Modelagem Numérica x Modelagem Centrífuga.

Com relação aos modelos analisados sem os elementos de contato, no intuito da representação da superfície de ruptura, obteve-se resultados interessantes, como pode ser observado comparando-se as Figuras 48 e 49.

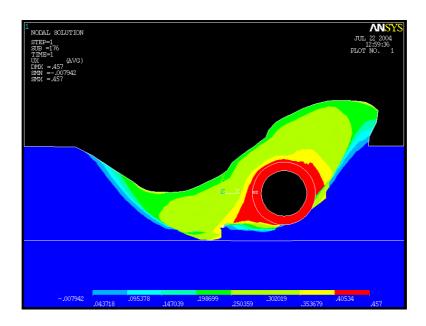


Figura 48 – Superfície de ruptura do modelo H/D = 25% via ANSYS.

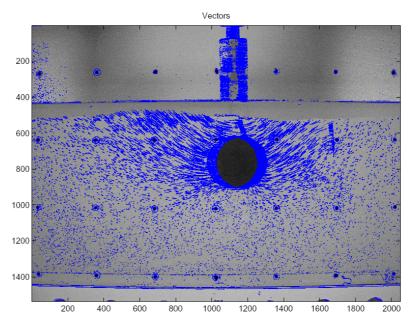


Figura 49 – Superfície de ruptura do modelo H/D = 25% via aparato 1g.

As trincas que aparecem em determinado ponto do ensaio 1g não poderão ser representadas pelo modelo de elementos finitos, mas a superfície de ruptura é bastante semelhante.

9.1 VALIDAÇÃO DOS MODELOS DE ELEMENTOS FINITOS

O modelo de elementos finitos apresentou significativas limitações, tais como:

➤ O elemento de contato do ANSYS apresentou limitações que podem ser explicadas, de acordo com seu próprio Manual Teórico, por:

Altíssima diferença entre as rigidezes dos elementos que estão em contato, no caso aço e argila mole;

Material não-linear, com plasticidade perfeita ($\mu = 0$) e de resistência baixíssima na região de contato.

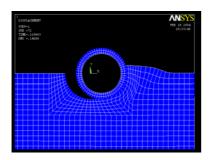
- ➤ O solo é um material elasto-plástico, anisotrópico e com respectiva curva de Tensão x Deformação nada comportada, diferentemente da que foi modelada. Características do solo como a tixotropia não puderam ser modeladas.
- > Trincas nunca poderiam aparecer no modelo numérico em questão.

Apesar de todas as limitações do modelo, seus resultados apresentaram características importantes como a visualização da superfície de ruptura e a comparação pertinente com os modelos experimentais no que diz respeito à mobilização de resistência do solo.

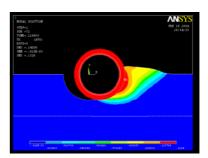
9.2 PRÓXIMAS ATIVIDADES

Como trabalhos futuros, já em desenvolvimento, temos o aperfeiçoamento das curvas de resistência e alterações relevantes em alguns parâmetros do solo que estão sendo realizadas em conjunto com o CENPES / PETROBRAS, além da tentativa de melhor modelagem do fenômeno utilizando-se outros *softwares* comerciais com um foco mais geotécnico do que estrutural (CRISP, por exemplo). Os resultados retirados das análises de estado plano de deformações, serão utilizados como parâmetros de entrada para um modelo tridimensional que simulará a flambagem do duto.

10 REFERÊNCIAS

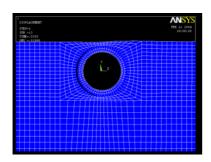

- [1] **Pipeline failure on very soft clay,** Almeida M. S. S., Costa A. M., Amaral C. S., Benjamin A. C., Noronha Jr. D. B., Futai M. M. & Mello J. R. (2001), 3rd International Conference on Soft Soil Engineering, Hong Kong.
- [2] **Estudos geotécnicos de dutos enterrados,** Almeida M. S. S., Almeida M. C. F., Lacerda W. A., Marques M. E. S., Futai M. M. (2002), Relatório 3, Projeto FNDCT/CTPETRO, Rio de Janeiro.
- [3] **Geotechnical Centrifuge Technology,** Taylor, R. N, Blackie Academic & Professional Technology 1995.
- [4] Consolidation characteristics of lumpy fill, Manivannan R., Wong J. C., Leung C. F., Tan S. A. (1998) -, Proc. of the International Conference Centrifuge 1998, Tokyo, Vol. 1.
- [5] Estudos geotécnicos de dutos enterrados, Almeida M. S. S., Almeida M. C. F., Lacerda W. A., Marques M. E. S., Futai M. M. (2002), Relatório 6, Projeto FNDCT/CTPETRO, Rio de Janeiro.
- [6] **Programa ANSYS** Commands Reference.
- [7] **Programa ANSYS** Elements Reference.
- [8] **Análise Não Linear Básica com o Ansys** Softec Software Tecnology Apostila 2001.
- [9] **Finite Element Procedures,** Bathe, K. J.,. Prentice Hall, 1996.
- [10] **The Finite Element Method,** Zienkiewicz, O. C., Taylor, R. L., 4 nd edition, McGraw-Hill, 1989.
- [11] **Concepts and Applications of Finite Element Analysis,** Cook, R. D., Malkus, D. S., Plesha M. E., 3 nd edition, John Wiley & Sons, 1989.
- [12] Nonlinear Finite Elements Analysis of Solids and Structures, Crisfield, M. A, John Wiley & Sons, v. 1, 1991.
- [13] The limiting pressure on a circular pile loaded laterally in cohesive soil, Randolph, M. F, Houlsby, G. T., Geotechnique, v. 34, 1984.

<u>APÊNDICES</u>

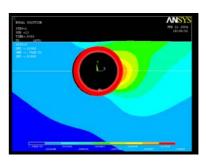

APÊNDICE A: RESULTADOS DAS ANÁLISES NUMÉRICAS

Grupo 1:

-50%

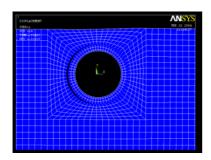


Deformada

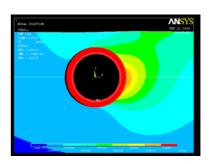


Deslocamento em X

9%

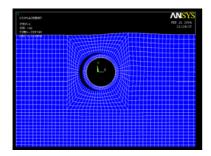


Deformada

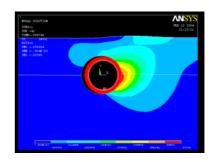


Deslocamento em X

25%

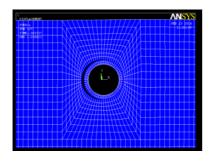


Deformada

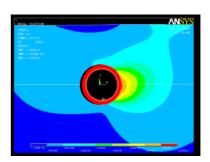


Deslocamento em X

50%

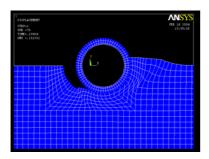


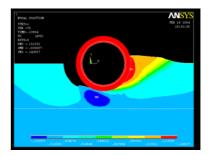
Deformada



 $Deslocamento\ em\ X$

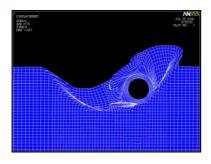
100%


Deformada

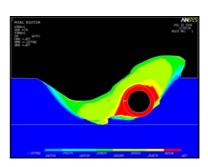

 $Deslocamento\ em\ X$

Grupo 2:

-50%

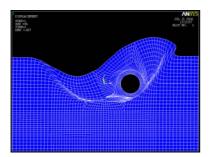


Deformada

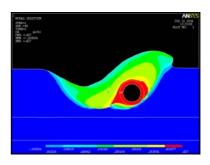


 $Deslocamento\ em\ X$

25%



Deformada



 $De slocamento\ em\ X$

50%

De formada

 $Deslocamento\ em\ X$

APÊNDICE B: PLANILHA PADRÃO PARA COLETA DE RESULTADOS

Grupo 1

Analysis No: 1d note:Fx-mod ignores any nodal forces

Type: C that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m

pipe embedment, H/D -50% (half buried)

Prescribed disp. 0,56 m No. substeps 158

No. substeps 158 FKN 10

Su pipe axis (Su) 88,37 Pa

substep no.	time factor (0	disp m	disp/D	∆Fx N	∆Fx-mod N	∆Fx/SuD	∆Fy N	∆Fy/SuD
(0	0	0	0		0	0	0
1	-,	0,00196	0,003519	42,81		0,869713	-29,84	-0,60622
2		0,00392	0,007038	85,24		1,731705	-60,261	-1,22424
3	0,0088375	0,004949	0,008885	105,15		2,13619	-75,587	-1,5356
	- ,	0,005978	0,010732	119,06		2,41878	-89,404	-1,8163
5	0,012512	0,007007	0,012579	129,26		2,626	-102,23	-2,07687
6		0,008551	0,015351	139,79		2,839923	-117,26	-2,38221
7	•	0,009111	0,016357	143,02		2,905543	-122,06	-2,47973
3		0,009671	0,017362	145,66		2,959176	-127,1	-2,58212
9	0,018769	0,010511	0,01887	149,12		3,029468	-134,08	-2,72392
10	0,019769	0,011071	0,019875	151,15		3,070709	-138,24	-2,80843
11	-,	0,011631	0,020881	152,94		3,107074	-142,14	-2,88767
16		0,016811	0,030181	164,78		3,347611	-171,16	
21	,	0,022551	0,040486	174,33		3,541626	-200,72	-4,07776
27		0,028921	0,051922	185,17		3,761847	-222,72	
31	-,	0,033821	0,060719	193,52		3,931483	-238,95	-4,85442
38	0,070894	0,039701	0,071276	202,63		4,116558	-251,11	-5,10146
44	0,080394	0,045021	0,080827	208,78		4,241499	-260,55	-5,29324
53	0,090394	0,050621	0,090881	215,55		4,379036	-270,69	-5,49924
60	0,10089	0,056498	0,101433	225,98		4,590928	-282,33	-5,73571
72	-,	0,067542	0,12126	241,48		4,905821	-296,65	-6,02663
85	0,13929	0,078002	0,14004	255,34		5,187396	-314,19	-6,38297
101	The state of the s	0,089622	0,160902	273,5		5,556328	-327,1	-6,64525
116		0,101242	0,181764	288,13		5,853545	-341,8	-6,94389
132	The state of the s	0,111742	0,200615	300,69		6,10871	-356,81	-7,24882
150	0,22029	0,123362	0,221476	314,52	319,42	6,389675	-374,29	-7,60394
158	0,22979	0,128682	0,231028	321,68	329,2	6,535135	-383,51	-7,79125

Analysis No: 3 note:Fx-mod ignores any nodal forces

Type: C that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 9% Prescribed disp. 0,56 m No. substeps 12

No. substeps 12 FKN 10 **Su pipe axis (Su)** 208,56 Pa

substep	time factor	disp	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	
0		0	0	0		0	0	0
1	0,0035	0,00196	0,003519	95,986		0,826278		
2		0,00392	0,007038	191,88		1,651765	-87,239	
3		0,00686	0,012316	332,07		2,858566	-155,63	•
4	-,-	0,007889	0,014163	378,6		3,259111	-180,77	•
5	0,015925	0,008918	0,016011	423,13		3,642439	-205,78	•
6	-,	0,010461	0,018782	479,97		4,131736		-2,08485
7	0,019681	0,011021	0,019787	497,29		4,280833		-2,19461
8	0,020681	0,011581	0,020792	513,61		4,42132	-267,39	-2,30178
9	0,022181	0,012421	0,0223	535,71		4,611564	-285,4	-2,45682
10	0,023681	0,013261	0,023809	556,1		4,787088	-302,93	-2,60772
11	0,025931	0,014521	0,026071	583,11		5,019599	-328,02	-2,8237
12	0,026931	0,015081	0,027076	593,99		5,113257	-338,53	-2,91418
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0

Analysis No: 4 note:Fx-mod ignores any nodal forces

Type: C that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 25% Prescribed disp. 0,56 m No. substeps 23 Su pipe axis (Su) 265,12 Pa

FKN 10

substep no.	time factor	disp m	disp/D	∆Fx N	∆Fx-mod N	∆Fx/SuD	∆Fy N	∆Fy/SuD
0	0	0	0	0	11	0	0	0
1	0,001	0,00056	0,001005	44,198		0,299304	-19,4	ŭ
2	0,002	0,00112	0,002011	88,4		0,598634	-38,8	
3	0,0035	0,00196	0,003519	154,8		1,048287	-68	-0,46049
4	0,00575	0,00322	0,005781	254,4		1,722766	-112	
5	0,009125	0,00511	0,009174	402,8		2,727713	-179,2	•
6	0,014188	0,007945	0,014264	582,6		3,945297	-281,9	-1,90899
7	0,016719	0,009363	0,016809	640		4,334003	-327,7	-2,21915
8	0,01925	0,01078	0,019354	684,4		4,634675	-364,7	-2,4697
9	0,021781	0,012197	0,021898	719,3		4,871013	-401,12	-2,71634
10	0,02368	0,013261	0,023808	741,7		5,022703	-426,6	-2,88888
11	0,025578	0,014324	0,025716	762		5,160173	-450	-3,04735
12	0,027477	0,015387	0,027625	780		5,282066	-473	-3,2031
13	0,028477	0,015947	0,02863	789		5,343013	-483,9	-3,27691
15	0,030977	0,017347	0,031144	809,76		5,483598	-510,7	-3,4584
17	0,032977	0,018467	0,033155	826,2		5,594927	-532,2	-3,60399
19	0,035977	0,020147	0,036171	848,9		5,748649	-566,9	-3,83898
21	0,03977	0,022271	0,039984	862,6		5,841424	-588,3	-3,9839
23	0,040477	0,022667	0,040695	877,2		5,940293	-614,9	-4,16403
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0

10

Analysis No: 5 note:Fx-mod ignores any nodal forces

Type: C that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 50% Prescribed disp. 0,56 m No. substeps 53

No. substeps 53 FKN Su pipe axis (Su) 353,49 Pa

substep	time factor	disp	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	
0			0	0		0	0	0
1		0,00196	0,003519	183,9		0,934012	-72,4	-0,36771
2		0,00392	0,007038	368,1		1,869547	-145,2	-0,73746
3		0,00686	0,012316	629,8		3,198698	-258,2	-1,31137
4		0,00742	0,013321	668,3		3,394236	-279,6	-1,42006
5		0,00798	0,014327	703,2		3,57149	-300,6	-1,52672
6		0,00882	0,015835	749,2		3,805119	-330,6	-1,67909
7	,		0,017343	788,9		4,006752	-358	-1,81825
8		0,01022	0,018348	812,6		4,127122	-374,3	-1,90104
9		•	0,019354	834,1		4,236319	-389,6	-1,97874
10	,	0,01162	0,020862	863,5		4,385639	-412,2	-2,09353
16		0,01736	0,031167	1005,7		5,10786	-550,6	-2,79645
23	,	0,02254	0,040467	1095,8		5,56547	-662,4	-3,36427
30			0,050144	1162,8		5,905757	-746,5	-3,79141
37	0,059625	0,03339	0,059946	1229,5		6,24452	-804,2	-4,08446
44	0,06975	0,03906	0,070126	1288,6		6,544684	-857,8	-4,35669
51	0,0795	0,04452	0,079928	1336,1		6,785932	-892,8	-4,53445
53	0,08275	0,04634	0,083196	1350,8		6,860592	-903,8	-4,59032

Analysis No: 6 note:Fx-mod ignores any nodal forces

Type: C that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 100% Prescribed disp. 0,56 m No. substeps 13

 No. substeps
 13
 FKN
 1

 Su pipe axis (Su)
 530,23 Pa
 FKN =10 gave conv to TF 0.028

substep	time facto	r disp	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	
(0		0	0		0	0	0
	1 0,01	0,0056	0,010054	497,2		1,683489	-141,5	-0,47911
	2 0,015	0,0084	0,015081	738,5		2,500517	-216,7	-0,73373
(3 0,02	0,0112	0,020108	948,3		3,210887	-292,2	-0,98937
	4 0,021	0,01176	0,021113	983,9		3,331426	-306,9	-1,03914
į	5 0,022	0,01232	0,022118	1017,5		3,445194	-321,3	-1,0879
(0,0235	0,01316	0,023627	1064,9		3,605688	-342,5	-1,15968
	7 0,025	0,014	0,025135	1109		3,755008	-363,3	-1,23011
8	0,026	0,01456	0,02614	1137,3		3,85083	-377,2	-1,27718
(9 0,027	0,01512	0,027145	1164		3,941234	-390,7	-1,32289
10	0,0285	0,01596	0,028654	1202,3		4,070916	-410,5	-1,38993
11	<mark>1 0,03075</mark>	0,01722	0,030916	1255,9		4,252402	-439,2	-1,4871
12	2 0,03175	0,01778	0,031921	1277		4,323845	-452	-1,53044
10	3 0,03275	0,01834	0,032926	1292,1		4,374973	-461	-1,56092
		0	0			0		0
		0	0			0		0
		0	0			0		0
		0	0			0		0

Analysis No: 7c note:Fx-mod ignores any nodal forces

Type: G that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D -50% Prescribed disp. 0,56 m No. substeps 135

No. substeps 135 FKN 1
Su pipe axis (Su) 1459,48 Pa note: also tried lower FKN but either coeff ratio problem or over-penetration in contact

			/5	. –	•	en or over-p		
substep	time factor	-	disp/D	∆Fx		∆Fx/SuD	•	∆Fy/SuD
no.	_	m	_	N	N		N	_
0	-	0	0	0		0	0	0
1	0,01	0,0056	0,010054	688,5		0,846935	-408,4	-0,50238
2		0,007	0,012567	858,13		1,0556	-512,47	-0,6304
3		0,0084	0,015081	993,64		1,222293	-616,6	-0,75849
4		0,00896	0,016086	1038,1		1,276984	-655,4	-0,80622
5		0,00952	0,017092	1076,9		1,324713	-691,96	-0,85119
6		0,01036	0,0186	1127,3		1,386711	-743,14	-0,91415
7	- ,	0,01092	0,019605	1156,6		1,422753	-775,21	-0,9536
8		0,01148	0,02061	1183,3		1,455597	-806,04	-0,99152
9	-,	0,01204	0,021616	1207,5		1,485366	-835,51	-1,02777
10	,	0,01288	0,023124	1240,7		1,526206	-878,1	-1,08017
14	0,030125	0,01687	0,030287	1356,2		1,668284	-1050	-1,29162
20		0,022767	0,040875	1465		1,802121	-1265,3	-1,55647
25	0,0505	0,02828	0,050772	1528,9		1,880725	-1402,3	-1,72499
29	0,059992	0,033596	0,060315	1572,2		1,93399	-1503,1	-1,84899
35	0,068992	0,038636	0,069364	1604,1		1,97323	-1587,8	-1,95318
38	0,077992	0,043676	0,078412	1629,6		2,004598	-1661,5	-2,04384
43	- /	0,050466	0,090602	1659		2,040764	-1754,6	-2,15836
49	0,099617	0,055786	0,100154	1675,4		2,060938	-1791,6	-2,20388
58	0,11987	0,067127	0,120516	1704,1		2,096242	-1850,3	-2,27609
68	0,14062	0,078747	0,141377	1730		2,128102	-1930,9	-2,37523
78	0,16012	0,089667	0,160982	1757,9		2,162422	-2004,1	-2,46528
90	0,17962	0,100587	0,180587	1775,3		2,183826	-2050,4	-2,52223
105	0,20099	0,112554	0,202073	1805,1		2,220484	-2113,7	-2,6001
115	,	0,122713	0,22031	1829,1		2,250007	-2151,7	-2,64684
127		0,134557	0,241574	1850,9		2,276823	-2191,5	-2,6958
132	0,24965	0,139804	0,250995	1865,1		2,294291	-2204,7	-2,71204
135	0,25334	0,14187	0,254704	1870,9		2,301425	-2210,7	-2,71942

Analysis No: 9 note:Fx-mod ignores any nodal forces

Type: G that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 9% Prescribed disp. 0,56 m No. substeps 13

No. substeps 13 FKN 1
Su pipe axis (Su) 1540,38 Pa note: also tried lower FKN but either coeff ratio problem or over-penetration in contact

					•	em or over-p	enetration ii	n contact
substep	time factor	disp	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	
C	0	0	0	0		0	0	0
1	0,0035	0,00196	0,003519	392,54		0,457512	-104,34	-0,12161
2	0,007	0,00392	0,007038	785,6		0,915629	-209,42	-0,24408
3	0,01225	0,00686	0,012316	1372,7		1,599904	-368,72	-0,42975
4	0,0175	0,0098	0,017594	1842,4		2,147347	-532,87	-0,62107
5	0,020125	0,01127	0,020233	2011,5		2,344435	-613,46	-0,715
6		0,01274	0,022873	2145,6		2,500731	-692,82	-0,80749
7	0,025375	0,01421	0,025512	2258,8		2,632667	-770,67	-0,89823
8	-,	•	0,026517	2295,8		2,675792	-799,16	-0,93143
9		•	0,027522	2331,6		2,717517	-827,49	-0,96445
10		0,01617	0,029031	2382		2,776259	-868,97	-1,0128
11	- /	•	0,031293	2449,8		2,855281	-928,31	-1,08196
12		•	0,034686	2537,4		2,95738	-1012,6	-1,1802
13	0,0355	0,01988	0,035691	2560		2,983721	-1036,8	-1,20841

Analysis No: 10 note:Fx-mod ignores any nodal forces

0,01918 0,034434

Type: G that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 25% Prescribed disp. 0,56 m No. substeps 14

Su pipe axis (Su) 1578,44 Pa

0,03425

substep	time factor	disp	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	
(0	0	0	0		0	0	0
1	0,0035	0,00196	0,003519	420,5		0,47828	-91	-0,1035
2	0,007	0,00392	0,007038	841,4		0,957014	-182,7	-0,2078
3	0,01225	0,00686	0,012316	1471,2		1,673353	-321,7	-0,3659
	0,0175	0,0098	0,017594	1993		2,266852	-465,8	-0,5298
5	0,020125	0,01127	0,020233	2186,2		2,486599	-534,2	-0,6076
6	0,02275	0,01274	0,022873	2345,9		2,668243	-603,7	-0,68665
7	7 0,02375	0,0133	0,023878	2399,5		2,729208	-630,3	-0,71691
8	0,02475	0,01386	0,024883	2449,3		2,78585	-656,7	-0,74694
e e	0,02625	0,0147	0,026391	2517,9		2,863877	-695,9	-0,79152
10	0,0285	0,01596	0,028654	2609,7		2,968291	-753,9	-0,85749
11	0,03075	0,01722	0,030916	2688,9		3,058373	-810,4	-0,92175
12	0,03175	0,01778	0,031921	2721,4		3,095339	-835	-0,94973
13	0.03275	0.01834	0.032926	2751		3 129006	-859 1	-0 97715

2793

FKN

1

-895,1

-1,01809

3,176777

Analysis No: 11 note:Fx-mod ignores any nodal forces

Type: G that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 50% Prescribed disp. 0,56 m No. substeps 42

Su pipe axis (Su) 1637,92 Pa

FKN	1
-----	---

substep	time factor	-	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	-	∆Fy/SuD
no.		m		N	N		N	0
0		0	0	0		0	0	0
1		0,0056	0,010054	1297,8		1,422521	-228,1	-0,25002
2		0,00756	0,013573	1743,9		1,911492	-309,8	-0,33957
3		0,00952	0,017092	2125,1		2,329326	-392,7	-0,43044
4	-,	0,01099	0,019731	2358,1		2,584718	-448,8	-0,49193
5	,	0,01246	0,02237	2552,5		2,7978	-506,5	-0,55518
6		0,01393	0,025009	2718,8		2,980082	-563,2	-0,61732
7	,	0,01449	0,026014	2776,1		3,042889	-585,1	-0,64133
8		0,01505	0,02702	2830,2		3,102188	-606,7	-0,66501
9		0,01589	0,028528	2903,2		3,182203	-637,1	-0,69833
10		0,01715	0,03079	3007,2		3,296198	-683,7	-0,7494
11		0,01904	0,034183	3143,6		3,445706	-752,5	-0,82482
13		0,022867	0,041054	3360,1		3,683012	-888,1	-0,97345
16		0,027581	0,049516	3559,2		3,901246	-1049	-1,14981
22	,	0,033807	0,060695	3743,6		4,103367	-1228,9	-1,347
28		0,038707	0,069492	3860,2		4,231173	-1361,5	-1,49234
33		0,04533	0,081383	3982,1		4,364788	-1512	-1,65731
36		0,050539	0,090735	4062,9		4,453353	-1623,4	-1,77941
42	0,099749	0,055859	0,100286	4137,1		4,534683	-1727,8	-1,89384

Analysis No: 12 note:Fx-mod ignores any nodal forces

Type: G that act in direction of motion - left blank if insignificant

pipe diameter, D 0,557 m pipe embedment, H/D 100% Prescribed disp. 0,56 m No. substeps 27

Su pipe axis (Su) 1756,89 Pa

FKN	1

substep no.	time factor	disp m	disp/D	∆Fx N	∆Fx-mod N	∆Fx/SuD	∆Fy N	∆Fy/SuD
0	0	0	0	0	.,	0	0	0
1	0,01	0,0056	0,010054	1388,2		1,418578	-188,8	-0,19293
2	0,015	0,0084	0,015081	2066,7		2,111925	-285,5	-0,29175
3	0,02	0,0112	0,020108	2618,2		2,675493	-375,5	-0,38372
4	0,0225	0,0126	0,022621	2840,2		2,902351	-419	-0,42817
5	0,025	0,014	0,025135	3034,4		3,100801	-459,8	-0,46986
6	0,026	0,01456	0,02614	3105,6		3,173559	-476,4	-0,48682
7	0,027	0,01512	0,027145	3173,7		3,243149	-492,7	-0,50348
8	0,0285	0,01596	0,028654	3271,1		3,342681	-516,8	-0,52811
9	0,03075	0,01722	0,030916	3407		3,481555	-552,1	-0,56418
10	0,034125	0,01911	0,034309	3588,7		3,667231	-603,3	-0,6165
13	0,040031	0,022417	0,040247	3863,6		3,948146	-689,8	-0,70489
16	0,049618	0,027786	0,049885	4225,4		4,317863	-823,3	-0,84132
23	0,059362	0,033243	0,059682	4511,9		4,610633	-941	-0,96159
27	0,065737	0,036813	0,066091	4667,2		4,769331	-1023,6	-1,046

Grupo 2

Analysis N	No:	1		note:Fx-mod ignores any nodal forces					
Type:		CB		that act in dire	ction of motior	n - left blank if	finsignificant		
pipe diam	eter, D	0,457	m						
pipe embe	edment, H/D	-50%		(half buried)					
Prescribe	d disp.	0,457	m						
No. subst	eps	120			FKN	5			
Su pipe axis (Su)		72,48	Pa						
substep	time factor (0	-	disp/D	∆Fx	∆Fx-mod	∆Fx/SuD	-	∆Fy/SuD	
no.	0	m	0	N	N	0	N	0	
0		0 0,0016	0 0,0035	12.062		0 0,83705	0 -10,515	0 -0,6349	
1 2		0,0016	0,0035	13,863 27,758		1,676033	-10,515	-0,6349 -1,27577	
3		0,005199	0,007	48,658		2,937979	-21,129	-1,27377	
4			0,01223	64,015		3,865237	-49,068	-2,24632 -2,96273	
5			0,020125	76,116		4,595898	-59,425	-3,58809	
6			0,020125	78,489		4,73918	-61,944	-3,74019	
7		•	0,022125	80,637		4,868877	-64,408	-3,88897	
8			0,023625	83,594		5,047421	-68,022	-4,10718	
9			0,025875	87,547		5,286104	-73,27	-4,42406	
10		*	0,027563	90,398		5,458248	-77,104	-4,65555	
11	0,02925		0,02925	92,817		5,604307	-80,935	-4,88687	
16	0,0369688	0,016895	0,036969	101,69		6,140061	-97,149	-5,86587	
21	0,0474688	0,021693	0,047469	110,57		6,676237	-114,9	-6,93768	
27	0,0588438	0,026892	0,058844	118,58		7,159882	-129,72	-7,83252	
31	0,0638438	0,029177	0,063844	121,69		7,347664	-136,09	-8,21714	
38	0,0774688	0,035403	0,077469	130,19		7,860896	-152,08	-9,18262	
44	-,	*	0,092391	138,78		8,379562	-169,6	-10,2405	
53	,		0,10664	146,11		8,822148	-181,83	-10,9789	
60	,		0,12624	155,89		9,412666	-198,11	-11,9619	
72	,	0,066228	0,14492	164,97		9,960919	-210,15	-12,6889	
85		0,07354	0,16092	172,69		10,42705	-219,82	-13,2728	
101		0,084508	0,18492	184,86		11,16188	-235,49	-14,2189	
116		0,095819	0,20967	195,19		11,78561	-250,59	-15,1307	
120	0,21367	0,097647	0,21367	196,56		11,86833	-253,27	-15,2925	

Analysis I	No:	2		note:Fx-mod iç	gnores any no	dal forces		
Type:		СВ		that act in dire	ction of motior	n - left blank i	f insignificant	
pipe diam	eter, D	0,457	m					
pipe embe	edment, H/D	-18%		(half buried)			
Prescribe	d disp.	0,457	m					
No. subst	eps	63			FKN			
Su pipe a	xis (Su)	118,87	Pa					
substep	time factor	disp	disp/D	ΔFx	∆Fx-mod	∆Fx/SuD	∆Fy	∆Fy/SuD
no.		m		N	N		N	-
O		0	0			0	0	_
1		0,00457	0,01	13,863		0,510397	-10,515	-
2		0,003199	0,007			1,021971	-21,129	
3		0,005598	0,01225			1,791451	-37,236	
4	,	0,007394	0,01618			2,356852	-49,068	,
5		0,009197	0,020125			2,802377	-59,425	
6		0,009654	0,021125			2,889744	-61,944	
7	,	0,010111	0,022125			2,968827	-64,408	•
8		0,010797	0,023625			3,077696	-68,022	-
9		0,011825	0,025875			3,223234	-73,27	•
10	,	0,012596	0,027563			3,3282	-77,104	•
11	-,	0,013367	0,02925			3,417261	-80,935	
16		0,016895	0,036969			3,743939	-97,149	
21		0,021693	0,047469			4,070876	-114,9	•
27		0,026892	0,058844			4,365782	-129,72	
31	,	0,029177	0,063844			4,480283	-136,09	•
38 44		0,035403 0,042223	0,077469 0,092391	130,19 138,78		4,793229 5,109489	-152,08 -169,6	
		0,042223	0,092391					
53 63		0,046734	0,10664			5,379359 5,739431	-181,83	
03	0,12624	0,057692	0,12024	155,69		5,739431	-198,11	-1,29303

Analysis N	lo:	4					
Type:		СВ		вотн			
pipe diame	eter, D	0,457	m				
pipe embe	dment, H/D	25%					
Prescribed	d disp.	0,457	m				
No. subste	eps	181					
Su pipe ax	is (Su)	217,44	Pa				
· -	time factor	•	disp/D	∆Fx	ΔFx-mod ΔFx/SuD	-	∆Fy/SuD
no.		m		N	N	N	
0	0	0	0		0		0
1	0,01	0,00457	0,01	224,8	2,262244	-34,69	-0,3491
2	0,0145	0,006627	0,0145		3,213131	-50,3	-0,50619
3	0,019	0,008683	0,019		4,088644	-65,911	-0,66329
4	0,02575	•	0,02575		5,265051	-89,324	-0,8989
5	0,029661	0,013555	0,029661	577,48	5,811391	-102,93	-1,03582
6	0,033572	0,015342	0,033572		6,244317	-116,45	-1,17188
7	0,036212	0,016549	0,036212		6,490064	-125,64	-1,26436
8	0,038852	0,017755	0,038852		6,690325	-134,78	-1,35634
9	0,040634	0,01857	0,040634		6,793173	-141,58	-1,42477
10	0,042416	0,019384	0,042416		6,897228	-147,8	-1,48737
23	0,104		0,104		7,882431	-360,65	-3,62935
40	0,20093	0,091825	0,20093		7,936371	-696,81	-7,01225
58	0,30355	0,138722	0,30355		7,946938	-1052,7	-10,5937
75	0,40047	0,183015	0,40047		7,949957	-1388,8	-13,976
93	0,5031	0,229917	0,5031	790,15	7,951567	-1744,6	-17,5565
110	0,60002	0,274209	0,60002		7,952573	-2080,7	-20,9388
128	0,70265	0,321111	0,70265		7,953177	-2436,6	-24,5204
146	0,80527	0,368008	0,80527		7,953378	-2792,5	-28,1019
163	0,9022	0,412305	0,9022		7,953579	-3128,6	-31,4842
181	1	0,457	1	790,36	7,95368	-3467,8	-34,8977

Analysis N	lo:	5						
Type:		СВ		вотн				
pipe diameter, D		0,457	m					
pipe embedment, H/D								
Prescribed disp.		0,457	m					
No. substeps		106						
Su pipe axis (Su)		289,92	Pa					
	` ,	,						
substep	substep time factor disp		isp disp/D		∆Fx-mod ∆Fx/SuD		∆Fy	∆Fy/SuD
no.		m		N	N		N	
0	0	0	0	0		0	0	0
1	0,01	0,00457	0,01	271,96		2,052624	-34,706	-0,26194
2	0,02	0,00914	0,02			4,036038	-69,413	-0,5239
3		0,01371	0,03			5,778534	-104,11	-0,78577
4	0,035675	0,016303	0,035675	879,73		6,639782	-127,54	-0,96261
5	0,0435	0,01988	0,0435	954,56		7,204563	-150,93	-1,13915
6	0,053625	0,024507	0,053625	1029		7,766401	-168,05	-1,26836
7	0,06576		0,06576	1085,2		8,190572	-228,11	-1,72167
8	0,071221	0,032548	0,071221	1103		8,324917	-247,04	-1,86454
9	0,076681	0,035043	0,076681	1118		8,43813	-265,98	-2,00749
10	0,084872	0,038787	0,084872	1135,5		8,570212	-294,39	-2,22192
12	0,10893	0,049781	0,10893	1157,7		8,737767	-377,83	-2,85168
22	0,20165	0,092154	0,20165	1173,9		8,860037	-698,21	-5,26976
36	0,30469	0,139243	0,30469	1177,4		8,886453	-1055,5	-7,96641
54	0,40936	0,187078	0,40936	1178,3		8,893246	-1418,5	-10,7062
62	0,50049	0,228724	0,50049	1178,8		8,89702	-1735,8	-13,101
71	0,603	0,275571	0,603	1178,8		8,89702	-2090,6	-15,7789
80	0,70552	0,322423	0,70552	1178,9		8,897774	-2445,8	-18,4597
89	0,80803	0,36927	0,80803	1179		8,898529	-2801,2	-21,1421
98	0,91055	0,416121	0,91055	1179		8,898529	-3156,5	-23,8238
106	1	0,457	1	1179		8,898529	-3466,5	-26,1635

Analysis No: 6			note:Fx-mod ignores any nodal forces						
Type: GE			that act in direction of motion - left blank if insignificant						
pipe diameter, D		0,457	m				-		
pipe embedment, H/D		-50%							
Prescribed	Prescribed disp. 0,49								
No. subste	No. substeps				FKN	5			
Su pipe axis (Su) 159,95 Pa			Pa	note: also tried lower FKN but either coeff					
, , , , , , , , , , , , , , , , , , , ,				ratio problem or over-penetration in contact					
substep	time factor disp disp		disp/D	∆Fx	∆Fx-mod	ΔFx/SuD ΔFy ΔFy/SuI			
no.		m		N	N		N		
0	0	0	0	0		0	0	0	
1	0,0035	0,0016	0,0035	28,942		0,791878	-20,811	-0,56941	
2	0,007	0,003199	0,007	57,948		1,585506	-41,809	-1,14393	
3	0,01225	0,005598	0,01225	101,57		2,779041	-73,658	-2,01535	
4	0,020125	0,009197	0,020125	158,49		4,336421	-116,65	-3,19164	
5	0,022094	0,010097	0,022094	167,23		4,575555	-126	-3,44747	
6	0,024063	0,010997	0,024063	174,63		4,778025	-134,99	-3,69344	
7	0,025063	0,011454	0,025063	178,03		4,871052	-139,45	-3,81547	
8	0,026063	0,011911	0,026063	180,84		4,947936	-143,84	-3,93558	
9	0,027063	0,012368	0,027063	183,87		5,030839	-148,22	-4,05542	
10	0,028563	0,013053	0,028563	187,99		5,143566	-154,53	-4,22807	
14	0,034813	0,015909	0,034813	201,74		5,519777	-178,76	-4,89103	
20	0,042313	0,019337	0,042313	213,07		5,829776	-202,56	-5,54221	
25 29	0,048813 0,058188	0,022307 0,026592	0,048813 0,058188	220,87 230,13		6,04319 6,296552	-217,99	-5,96439	
35	0,036166	0,026592	0,036166	230,13		6,296552	-239,43 -260,19	-6,55101 -7,11902	
38	0,0705	0,032219	0,0705	245,73		6,723381	-272,04	-7,11902 -7,44325	
43	0,0795	0,030332	0,0795	255,5		6,990697	-272,04	-7,44323 -8,06461	
49	0,10488	0,04793	0,10488	262,34		7,177845	-308,13	-8,4307	
58	0,12188	0,055699	0,12188	273,18		7,474436	-328,43	-8,98612	
68	0,14254	0,065141	0,14254	285,79		7,819457	-350,8	-9,59819	
78	0,16579	0,075766	0,16579	299,6		8,19731	-367,73	-10,0614	
90	0,18511	0,084595	0,18511	311,71		8,52865	-380,8	-10,419	
105	0,21057	0,09623	0,21057	328,69		8,993237	-395	-10,8075	
115	0,2377	0,108629	0,2377	337,94		9,246325	-402,56	-11,0144	
127	0,24095	0,110114	0,24095	347,85		9,517471	-409,4	-11,2015	
131	0,2472	0,11297	0,2472	351,81		9,62582	-411,45	-11,2576	
		0	0			0		0	

Analysis No:		7		note:Fx-mod iq	gnores any noc	lal forces			
Type: GE				that act in direction of motion - left blank if insignificant					
pipe diameter, D		0,457	m						
pipe embedment, H/D		-18%							
Prescribed disp.		0,457	m						
No. subste	eps				FKN	5			
Su pipe ax	is (Su)	262,32	Pa		note: also t	ried lower F	KN but eith	er coeff	
			ratio problem or over-penetration in contact						
substep	ubstep time factor disp		disp/D	∆Fx	∆Fx-mod	∆Fx/SuD ∆Fy		∆Fy/SuD	
no.		m		N	N		N		
0	0	0	0	0		0	0	0	
1	0,0035	0,0016	0,0035	28,942		0,482852	-20,811	-0,3472	
2		0,003199	0,007	57,948		0,966772	-41,809	-0,69752	
3		0,005598	0,01225	101,57		1,694537	-73,658	-1,22887	
4	0,020125	0,009197	0,020125	158,49		2,644159	-116,65	-1,94612	
5	0,022094	0,010097	0,022094	167,23		2,789972	-126	-2,10211	
6	0,024063	0,010997	0,024063	174,63		2,91343	-134,99	-2,2521	
7	0,025063	0,011454	0,025063	178,03		2,970154	-139,45	-2,32651	
8	0,026063	0,011911	0,026063	180,84		3,017034	-143,84	-2,39975	
9	0,027063	0,012368	0,027063	183,87		3,067585	-148,22	-2,47282	
10	,	0,013053	0,028563	187,99		3,136321	-154,53	-2,57809	
14		0,015909	0,034813	201,74		3,365718	-178,76	-2,98233	
20		0,019337	0,042313	213,07		3,554741	-202,56	-3,3794	
25		0,022307	0,048813	220,87		3,684872	-217,99	-3,63682	
29	0,058188	0,026592	0,058188	230,13		3,839361	-239,43	-3,99452	
35		0,032219	0,0705	239,98		4,003693	-260,19	-4,34087	
38		0,036332	0,0795	245,73		4,099623	-272,04	-4,53856	
43		0,043026	0,09415	255,5		4,26262	-294,75	-4,91745	
49	0,10488	0,04793	0,10488	262,34		4,376735	-308,13	-5,14067	
58	0,12188	0,055699	0,12188	273,18		4,557583	-328,43	-5,47934	
68	0,14254	0,065141	0,14254	285,79		4,767961	-350,8	-5,85255	
78	0,16579	0,075766	0,16579	299,6		4,99836	-367,73	-6,135	
90	,	0,084595	0,18511	311,71		5,200396	-380,8	-6,35306	
105		0,09623	0,21057	328,69		5,483681	-395	-6,58996	
115	0,2377	0,108629	0,2377			5,638003	-402,56	-6,71609	
127		0,110114	0,24095	347,85		5,803336	-409,4	-6,8302	
131	0,2472	0,11297	0,2472	351,81		5,869402	-411,45	-6,8644	
		0	0			0		0	

Analysis No: 9 Type: GE вотн 0,457 m pipe diameter, D pipe embedment, H/D 25% Prescribed disp. 0,457 m No. substeps 181 Su pipe axis (Su) 479,85 Pa ΔFy ∆Fy/SuD substep time factor disp disp/D ΔFx ∆Fx-mod ∆Fx/SuD no. m Ν Ν 0 0 0 0 0 0 0 0,01 0,00457 0,01 1074,6 4,900328 -36,303 1 -0,16555 2 0,0145 0,006627 0,0145 1434,6 6,541979 -52,633 -0,24001 3 0,0155 0,007084 0,0155 1480,8 6,752657 -56,259 -0,25655 4 0,0165 0,007541 0,0165 1518,1 6,922751 -59,886 -0,27309 5 0,018 0,008226 0,018 1563,8 7,131149 -65,326 -0,2979 6 7,372836 0,02025 0,009254 0,02025 1616,8 -73,486 -0,33511 7 0,023625 0,010797 0,023625 1670,5 7,617716 -85,727 -0,39093 8 0,028687 0,01311 0,028687 1700,2 7,753152 -104,1 -0,47471 9 0,034463 0,01575 0,034463 1716 7,825202 -125,05 -0,57025 10 0,04023 0,018385 1725,1 -146,01 0,04023 7,8667 -0,66583 24 0,10276 0,046961 0,10276 1742,4 7,94559 -372,84 -1,700241 0,20312 0.092826 0,20312 1744 7,952886 -736,94 -3,36055 0,30349 1744.2 58 0,138695 0.30349 7,953798 -1101,1 -5,02117 7,954254 75 0,40386 0,184564 0,40386 1744,3 -1465,2 -6,68152 92 0,50422 0,50422 1744,4 7,954711 -1829,5 -8,34278 0,230429 109 0,60459 0,276298 0,60459 1744,4 7,954711 -2193,7-10,0036 0,322162 126 0,70495 0,70495 1744,4 7,954711 -2557,8 -11,6639 143 0,80532 0,368031 0,80532 1744,4 7,954711 -2922 -13,3247 0,90568 0,90568 -14,9851 160 0,413896 1744,4 7,954711 -3286,1 1744,4 -3628,3 176 1 0,457 7,954711 -16,5456 Analysis No: 10 Type: GE вотн 0,457 m pipe diameter, D pipe embedment, H/D 50% Prescribed disp. 0,457 m No. substeps 84 Su pipe axis (Su) 639,80 Pa ΔFy ∆Fy/SuD time factor disp disp/D ΔFx ∆Fx-mod ∆Fx/SuD no. m Ν Ν 0 0 0 0 0 0 0 0,01 0,00457 0,01 600,17 2,052645 -36,307 -0,12417 1 2 0.00914 -0,24835 0,02 0,02 1180,1 4,036067 -72,615 3 0,03 0,01371 0,03 1689,6 5,778611 -108,92-0,37252 4 0,03675 0,016795 0.03675 1941,4 6,639794 -133,42-0,45631 5 0,0435 0,01988 0,0435 2106,6 7,204795 -157,9 -0,54003 -194,64 6 0,053625 0,024507 0,053625 2271 7,767061 -0,66569 7 0,06576 0,030052 0,06576 2394,5 8,189444 -238,65 -0,81621 8 0,07789 0,035596 0,07789 2473,2 8,458606 -282,68 -0,9668 9 0,09 0,04113 0,09 2524 8,632347 -326,71 -1,11738 10 0,046692 2547,6 -370,76 -1,26804 0,10217 0,10217 8,713062 -1,56945 12 0,12644 0,057783 0,12644 2567,8 8,782148 -458,89 19 0,21139 0.096605 0,21139 2592,3 8,865941 -767,51 -2,62497 0.30848 -3,82949 27 0,140975 0,30848 2598,7 8,887829 -1119,7 35 0,40557 0,185345 -1471,2 -5,03166 0,40557 2600,4 8,893644 43 0,229711 2601,1 -1823,2 -6,23554 0,50265 0,50265 8,896038 52 0,61188 0,279629 0,61188 2601,5 8,897406 -2219,3-7,59024 0,323995 8,89809 60 0,70896 0,70896 2601,7 -2571,4 -8,79446 68 0,80605 0,368365 0.80605 2601,9 8,898774 -2923,5 -9,99868 76 0,90314 0,90314 2602 -11,2032 0,412735 8,899116 -3275,7 84 2602 -3626,9 -12,4044 1 0,457 8,899116