
PROCESS-AWARE CONVERSATIONAL AGENTS

Luis Fernando Lins dos Santos

Projeto de Graduação apresentado ao Curso

de Engenharia de Computação e Informação

da Escola Politécnica, Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Enge-

nheiro.

Orientador: Prof. Dr. Toacy Cavalcante de

Oliveira

Co-orientadora: Gláucia Melo dos Santos

Rio de Janeiro

Março de 2021

Declaração de Autoria e de Direitos

Eu, Luis Fernando Lins dos Santos CPF 151.182.607-01, autor da monogra-

fia Process-Aware Conversational Agents, subscrevo para os devidos fins, as seguintes

informações:

1. O autor declara que o trabalho apresentado na disciplina de Projeto de Gra-

duação da Escola Politécnica da UFRJ é de sua autoria, sendo original em forma e

conteúdo.

2. Excetuam-se do item 1. eventuais transcrições de texto, figuras, tabelas, conceitos

e idéias, que identifiquem claramente a fonte original, explicitando as autorizações

obtidas dos respectivos proprietários, quando necessárias.

3. O autor permite que a UFRJ, por um prazo indeterminado, efetue em qualquer

mı́dia de divulgação, a publicação do trabalho acadêmico em sua totalidade, ou em

parte. Essa autorização não envolve ônus de qualquer natureza à UFRJ, ou aos seus

representantes.

4. O autor pode, excepcionalmente, encaminhar à Comissão de Projeto de Gra-

duação, a não divulgação do material, por um prazo máximo de 01 (um) ano,

improrrogável, a contar da data de defesa, desde que o pedido seja justificado, e

solicitado antecipadamente, por escrito, à Congregação da Escola Politécnica.

5. O autor declara, ainda, ter a capacidade juŕıdica para a prática do presente ato,

assim como ter conhecimento do teor da presente Declaração, estando ciente das

sanções e punições legais, no que tange a cópia parcial, ou total, de obra intelectual,

o que se configura como violação do direito autoral previsto no Código Penal Bra-

sileiro no art.184 e art.299, bem como na Lei 9.610.

6. O autor é o único responsável pelo conteúdo apresentado nos trabalhos acadêmicos

publicados, não cabendo à UFRJ, aos seus representantes, ou ao(s) orientador(es),

qualquer responsabilização/ indenização nesse sentido.

7. Por ser verdade, firmo a presente declaração.

Luis Fernando Lins dos Santos

iii

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Engenharia de Computação e Informação

Centro de Tecnologia, bloco H, sala H-212A, Cidade Universitária

Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que

poderá inclúı-lo em base de dados, armazenar em computador, microfilmar ou adotar

qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibli-

otecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja

ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que

sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

iv

AGRADECIMENTO

Agradeço primeiramente à minha mãe Maria Lúcia, heróına que sempre vê o lado

positivo da vida e me ajuda a passar por todas as dificuldades com suas sábias

palavras. À minha avó Lúcia, carinhosa e atenciosa, e que esteve do meu lado a

todo momento, ajudando na minha educação e crescimento pessoal.

Às minhas tias Simone e Silvia, que sempre torceram por mim e acreditaram

no meu potencial, e meus avós Margarida e Ozanir, que me ensinaram desde pequeno

a importância do estudo para o meu desenvolvimento.

Ao meu orientador Prof. Dr. Toacy, que não só vislumbrou o potencial deste

trabalho e me ajudou quando fiquei perdido, mas também me acolheu tão bem

quando fui visitá-lo no Canadá para realizar parte da minha pesquisa.

À Gláucia, co-orientadora e amiga, por sua enorme paciência e disposição

em ajudar, e também pelos momentos de descontração quando tudo parecia caótico

demais.

Agradeço a todos os professores da UFRJ que contribúıram para a minha

formação, e também aos professores Paulo e Don, da Universidade de Waterloo no

Canadá, pelo incentivo e suporte no tempo limitado que passei lá.

Aos meus amigos, agradeço pelo carinho, pelas risadas e pela força que me

deram durante todo o curso.

Por fim, agradeço ao universo, que, em sua linda e incompreenśıvel lou-

cura, me permitiu a oportunidade e privilégio de estudar nesta universidade, ter

experiências incŕıveis e conhecer pessoas especiais que levarei comigo para o resto

da vida.

v

RESUMO

Processos são essenciais na sociedade atual, já que os mesmos promovem a pa-

dronização, documentação e controle das interações entre empresas, governos, in-

div́ıduos e outras organizações. Processos também são usados em fluxos de trabalho

humano, em que os participantes atuam sozinhos ou em grupo para cumprir os

seus objetivos. Presentes na vida e na rotina da maioria das pessoas, processos

podem ser tão simples como seguir uma receita culinária ou tão complexos como

prover tratamento para uma doença grave. Portanto, é essencial fornecer suporte

aos participantes do processo durante sua execução. No entanto, a maioria das

soluções atuais para gerenciamento de processos, além de serem proprietárias, care-

cem de clareza ao tentar ajudar os usuários na execução de processos diários. Neste

trabalho, apresentamos um guia para a construção de um agente conversacional -

também conhecido como chatbot ou simplesmente bot - que utiliza o padrão Busi-

ness Process Model and Notation (BPMN) para auxiliar na execução de processos.

Descrevemos como os conceitos das áreas de processo e de agentes conversacionais

podem ser integrados, e também apresentamos um caso de uso em que um bot foi

implementado seguindo o guia, com o uso do framework Rasa - um framework de

chatbot - e também Camunda Engine - uma ferramenta de gerenciamento de pro-

cessos, também conhecida como sistema de gerenciamento de fluxo de trabalho ou

workflow management system (WFMS).

Palavras-Chave: processo de negócio, agente conversacional, fluxo de trabalho,

chatbot, Camunda, Rasa.

vi

ABSTRACT

Processes are an essential concept in current society, promoting the standardi-

zation, documentation and control of the interactions between businesses, govern-

ments, individuals and other organizations. Processes are also used in human work-

flows, where participants act solo or in collaboration with other participants to fulfill

the processes’ goals. Being present in most people’s lives and routines, processes can

be as simple as following a cooking recipe, or as complex as pursuing treatment for a

serious disease. Therefore, it is essential to provide support to process participants

during the execution of these processes. However, current solutions for process gui-

ding are usually proprietary and lack clarity when trying to help the general public

execute daily processes. In this work, we present a guide for building a conversation

agent – also known as a chatbot – that leverages the Business Process Model and

Notation (BPMN) standard to assist in the execution of processes. We describe how

concepts from the process and conversational agent domains can be integrated, and

also present a use case in which a bot was implemented according to the guide, with

the use of Rasa – a chatbot framework – and Camunda Engine – a business process

management tool, also known as a workflow management system.

Keywords: business process, conversational agent, workflow, chatbot, Camunda,

Rasa.

vii

SIGLAS

UFRJ - Universidade Federal do Rio de Janeiro

CA - Conversational Agent

PACA - Process-Aware Conversational Agent

BPMN - Business Process Model and Notation

WFMS - Workflow Management System

HCI - Human-Computer Interaction

BPMI - Business Process Management Initiative

REST - Representational State Transfer

API - Application Programming Interface

JAX-RS - Jakarta RESTful Web Services

GUI - Graphical User Interface

IPA - Intelligent Personal Assistants

IoT - Internet of Things

NLU - Natural Language Understanding

SDK - Software Development Kit

BPM - Business Process Management

JSON - JavaScript Object Notation

viii

XML - Extensible Markup Language

ix

Contents

1 Introduction 1

2 Background 5

2.1 Business Processes . 5

2.1.1 General Business Process Concepts 6

2.1.2 Camunda Concepts . 10

2.2 Conversational Agents . 11

2.2.1 General CA Concepts . 13

2.2.2 Rasa-specific Concepts . 14

3 Related Work 18

4 Integration Rationale 20

4.1 Manual Integration . 22

4.2 Integration with Workflow Engine . 26

5 PACA Generation Guide 30

5.1 Preparing the BPMN . 32

5.1.1 Setting general process properties 33

5.1.2 Setting each task’s type . 33

5.1.3 Configuring User tasks . 34

5.1.4 Requesting information with User tasks (optional) 34

5.1.5 Configuring gateways . 37

5.1.6 Setting up start and end events 37

5.2 Building the default Rasa bot . 38

5.2.1 Planning default intents . 39

x

5.2.2 Planning default actions . 39

5.2.3 Adding default intents to the nlu.md file 40

5.2.4 Adding default intents and actions to the domain.yml file . . . 40

5.2.5 Configuring default stories in the stories.md file 41

5.3 Adding process-specific pieces to the Rasa bot 42

5.3.1 Planning process-specific intents and adding them to the nlu.md

file . 42

5.3.2 Planning process-specific actions 44

5.3.3 Initial configuration of the actions.py file 45

5.3.4 Creating a start_process action in the actions.py file . . . 46

5.3.5 Creating a whats_next action in the actions.py file 49

5.3.6 Creating task actions in the actions.py file 50

5.3.7 Creating form actions in the actions.py file 52

5.3.8 Configuring process-specific stories in the stories.md file . . . 56

5.3.9 Configuring the domain.yml file 56

5.3.10 Configuring the config.yml file 59

5.4 Running Camunda and the Bot . 60

5.4.1 Launching Camunda Engine 60

5.4.2 Launching Rasa . 61

5.5 The conceptual connection between Business Processes and CAs . . . 61

6 Process-Aware Conversational Agent: A Use Case 65

7 Discussion 70

8 Conclusion 73

Bibliografia 75

xi

List of Figures

2.1 BPMN diagram for the Restaurant Reservation process. 7

2.2 Components of a business process. 9

2.3 Fragment of the nlu.md file from a Restaurant Reservation bot. . . . 15

4.1 Overview of the expected operation of the Process-Aware Conversa-

tional Agent. 21

4.2 Fragment of the stories.yml file from a Restaurant Reservation bot. 23

4.3 Fragment of the BPMN diagram for the “User Mood” process. 24

4.4 Fragment of the stories.yml file from a “User Mood” bot. 25

4.5 Overview of the necessary steps to configure and use the Process-

Aware Conversational Agent. 28

5.1 BPMN diagram for the “Trip Planning” process. 31

5.2 Process details shown in the sidebar of Camunda Modeler. 33

5.3 Action Menu shown in Camunda Modeler. 34

5.4 Task details shown in the sidebar of Camunda Modeler. 35

5.5 Fragment of a conversation showing the now_what intent. 35

5.6 Fragments of conversations. 36

5.7 Form tab shown in the sidebar of Camunda Modeler. 37

5.8 Sequence Flow details shown in the sidebar of Camunda Modeler. . . 38

5.9 Fragment of the nlu.md file from the “Trip Planning” bot with only

default intents. 40

5.10 Fragment of the domain.yml file from the “Trip Planning” bot with

only default intents and actions. 41

5.11 Fragment of the initial stories.md file from the “Trip Planning” bot. 41

xii

5.12 Fragment of the nlu.md file from the “Trip Planning” bot showing

the start_process, now_what and book_flight intents. 43

5.13 Fragment of the actions.py file from the “Trip Planning” bot showing

the imports. 45

5.14 Fragment of the actions.py file from the “Trip Planning” bot showing

the completeCurrentTask auxiliary function. 46

5.15 Fragment of the actions.py file from the “Trip Planning” bot showing

the start_process action and global variables. 48

5.16 Fragment of a conversation as a user asks to plan a trip. 48

5.17 Fragment of the actions.py file from the “Trip Planning” bot showing

the whats_next action. 50

5.18 Fragment of the actions.py file from the “Trip Planning” bot showing

the book_flight action. 51

5.19 Fragment of the actions.py file from the “Trip Planning” bot showing

the “Book transfer” action. 52

5.20 Fragment of the actions.py file from the “Trip Planning” bot showing

the ask_flight_date action. 53

5.21 Fragment of the domain.yml file from the “Trip Planning” bot showing

the slot section. 53

5.22 Fragment of the domain.yml file from the “Trip Planning” bot showing

the necessary information for a form. 54

5.23 Gateway sequence flow in Camunda when the userWantsToBookATransfer

variable is true. 55

5.24 Gateway sequence flow in Camunda when the userWantsToBookATransfer

variable is false. 55

5.25 The complete stories.md file from the “Trip Planning” bot. 57

5.26 The complete domain.yml file from the “Trip Planning” bot. 58

5.27 The config.yml file from the “Trip Planning” bot. 60

5.28 A complete conversation with the “Trip Planning” bot. 62

5.29 Diagram portraying the connection between Process and CA Concepts. 64

6.1 BPMN diagram for the “Wedding Planning” process. 66

6.2 A complete conversation with the “Wedding Planning” bot. 69

xiii

Chapter 1

Introduction

Millions of people execute processes every day. Processes are intrinsic to our

personal and professional lives, from planning a party or scheduling a trip, [1], to

hiring new employees or admitting students into a University program [2]. Processes

are essential for several reasons:

• Regulating a set of procedures in an attempt to unify the execution of a task

among members of a large team;

• Facilitating the identification of the most critical tasks on a list;

• Clarifying the dependencies between tasks so that users can execute them in

the right order;

• Improving e�ciency in task execution, both individually and for an entire

team, if applicable.

In this work, our primary focus is on business processes, i.e., processes that

are executed within an organization, and more specifically, processes that require

human action, also known as human workflows. According to Dang et al. [3], hu-

man workflows are dynamic sets of tasks performed by human participants to reach

a shared goal. However, performing tasks in a process permeated with human deci-

sions can be more complicated than it seems. Firstly, tasks may either have a strict

or loose order, and this uniformity might leave participants disoriented in complex

scenarios. Secondly, dependencies between tasks can be challenging to track in real

life, in which case, people might not even be aware of the required information

1

a priori and start executing tasks they cannot finish properly. Thirdly, processes

that rely heavily on humans may di↵er according to the context and require extra

documentation to avoid errors. [4]

In summary, participating in human workflows can be complex due to varying

execution sequences, dependencies between tasks, and multiple contexts. As a result,

process participants need a solution to guide them through process instances. In

recent years, a new technology has been gaining increased attention: a type of

system called “conversational agents” (CAs) [5]. CAs are programs that help develop

human-computer interactions (HCI) [6] through speech and written language. More

specifically, when a CA relies only on written communication, it can be called a

“chatbot”. Another fairly common nomenclature for CAs is the more generic term

“bot”. A CA has the goal of understanding user requests and responding to them

while maintaining a natural conversation flow. As will be shown in this work, CAs

can be especially helpful because they can capture variables and perform actions

while interacting with users in real-time.

Although CAs are flexible enough to foster several HCI scenarios, they lack

concepts from the business process domain, i.e., they do not consider the context

of a process instance when interacting with users. This means that CAs can miss

crucial process information, such as task ordering.

Therefore, our goal in this work is to investigate di↵erent methods of in-

tegrating process concepts into conversational agents, and ultimately, propose an

approach that would enable this integration successfully. For that matter, we pre-

sent a guide for building a Process-Aware Conversational Agent, also referred to

as Process-Aware CA, Process-Aware Bot, or simply PACA, that can help users

execute their daily processes.

With a CA interface capable of understanding user requests from natural

language and acknowledging sequence flows and dependencies between tasks, the

user can recognize all of the available activities for execution at any given moment.

Moreover, the CA can follow users throughout the process to avoid ambiguities and

mistakes while also collecting the current user’s context.

The main contributions of this work are:

• A preliminary discussion about di↵erent methods of integrating process con-

2

text into conversational agents;

• A Process-Aware CA (PACA) Generation Guide that helps a developer create

a Rasa chatbot that is connected to a process diagram deployed on Camunda

Engine;

• A conceptual model that illustrates the connection between business process

and conversational agent concepts;

• Examples of practical processes converted from BPMN diagrams to fully-

functioning PACAs.

The methodology used in this work to accomplish the goals and contributions

listed above is presented as follows:

1. Selection of the work subject, based on the research group’s focus on business

processes and the increase in interest in conversational agents in the last few

years

2. Ad-hoc literature review, both on business processes and conversational agents

3. Implementation of an early-stage “process-inspired” CA using only Rasa, as

explained in Section 4.1

4. Research about Camunda Engine, a Workflow Management System (WFMS)

5. Implementation of an actual Process-Aware CA (PACA), now integrated with

Camunda

6. Development of a PACA Generation Guide

7. Implementation of a use case using the PACA Generation Guide as reference

8. Project conclusion

The remainder of this work is organized as follows: Chapter 2 lays down

the foundations of this study and explains significant concepts that are present in

the business process and CA fields. Chapter 3 presents related work that has been

published in the past. Chapter 4 proposes two solutions for closing the distance

3

between business processes and CAs and explains why only one of the proposed

solutions was chosen for this work. Then, Chapter 5 presents a guide to help a

developer build a Process-Aware Conversational Agent using Rasa and Camunda

Engine, while Chapter 6 presents a use case of the guide being employed to build

a conversational agent. Chapter 7 discusses key aspects of the implementations

presented in the guide and the use case, and lastly, Chapter 8 brings a conclusion

to this work.

4

Chapter 2

Background

In this chapter, we briefly explain business process concepts and the modern

notations used for process representation. Then, we give an overview of Conversati-

onal Agents and show some examples of highly-capable CAs found in the industry

and the academy.

2.1 Business Processes

Every business has to execute several activities. To structure these activi-

ties, a process analyst may need to create a workflow, which will be relied on over

the project’s life cycle. This workflow will represent strategic decisions, tasks, and

technological aspects of the project. Thus, it is crucial that this workflow is built

using an e↵ective methodology. Works such as [1] and [2] help create a shared

understanding of business process concepts and technologies that serves both busi-

ness administrators and computer scientists, who usually have disparate scopes of

knowledge.

For quite some time, businesses used flowcharts to represent these processes.

Flowcharts can graphically represent di↵erent characteristics of a system and have

emerged from a notation system developed in the 1920s with loose standards. In

2004, however, the Business Process Management Initiative (BPMI) developed a no-

tation called Business Process Model and Notation (BPMN) in an attempt to make

processes readily understandable by all sorts of users, including business analysts,

technical developers, and business users. BPMN is currently in version 2.0, and it is

5

a structured notation for developing graphic representations of business or corporate

operations.

One great example that demonstrates the importance of process modelling

is present in the chemical industry. When mixing chemicals to create a chemical

reactor, or even controlling the already working reactor, processes must be followed

thoroughly to avoid disasters [7].

To aid in the execution of these processes, tools like Workflow Management

Systems (WFMS) began to rise. These tools help manage and track the state of

activities inside a workflow, facilitating the flow of tasks, information, and events.

Since most of these systems use the BPMN standard, they also share a significant

number of process concepts. Subsection 2.1.1 will introduce these general concepts.

Then, in Subsection 2.1.2, there will be presented some of the concepts that are

specific to Camunda Engine. Camunda was the WFMS we decided to use for this

work because it is open-source and frequently used by our research group.

2.1.1 General Business Process Concepts

Each business process is unique in that each of them has its own purpose and

intended result. However, when following the BPMN standard, some characteristics

are common to most processes, and these properties can help us understand the

business process domain a little more. In this subsection, we will go through each of

these concepts following the order in which they might appear in a standard process

flow. To better explain each concept, throughout this subsection, we will follow the

example of a Restaurant Reservation process, represented in Fig. 2.1.

In this Restaurant Reservation scenario, after the start event, the user can

execute the five following tasks in any order. Each task represents the piece of

information that the user has to provide to the bot so that it can make the actual

reservation. The user needs to inform the desired cuisine, the number of people for

the table, the placement preference (indoors or outdoors), additional preferences,

and, finally, some feedback about their experience with the Restaurant Reservation

system itself.

We will start by analyzing a concept that every typical process – including

this one – necessarily has, which is events. An event is when something relevant to

6

Figure 2.1: BPMN diagram for the Restaurant Reservation process.

the process happens transiently, i.e, with no duration in time, [2]. The start and end

events are two examples of those that will most frequently exist and that always

occur atomically. For example, in the Restaurant Reservation system, whenever a

user is ready to reserve a restaurant and informs that to the system, that is a quick

circumstance, i.e., an event, and it initiates the reservation process, triggering a

series of tasks.

Tasks, for their part, are pieces of work that take a certain amount of time.

For example, gathering and storing each user preference for the reservation can take

a while, and therefore, these actions are considered tasks.

While a task refers to an indivisible piece of work, another relevant term that

appears in our work is activity, which can describe small or larger pieces of work,

including sub-processes, and thus, it is a more generic term. According to the o�cial

BPMN documentation [8], “a task is an atomic activity within a process flow. A

task is used when the work in the process cannot be broken down to a finer level of

detail,” while “An activity can be atomic or non-atomic (compound).”

In this work, we will most often use the term task. However, if the term

activity comes up, it can be taken as a synonym to task since we will not be using

the term activity to describe any sub-processes or larger operations.

A few sub-types of tasks are User Tasks, Manual Tasks, and Service Tasks.

User tasks are the ones in which a user has to perform a task with the aid of a

7

software tool, such as shipping a purchase order. They can also require information

to be provided by the user, for example, the tracking number related to the approved

order. In contrast, Manual tasks are the ones that rely solely on physical human

execution - without the use of software -, such as filling out a paper document.

Finally, a Service task is executed automatically by an application program, without

human intervention.

In the example of reserving a restaurant table, five User tasks are representing

each of the five necessary user inputs (desired cuisine, number of people, placement

preference, additional preferences, and feedback). Together, these five tasks can

be viewed as one single activity, such as “gathering information for reserving a

restaurant table”.

Besides events and activities, a typical process can also include gateways,

which are spots where the process flows can diverge or converge, i.e., where the

process flow can go in more than one direction. Gateways can be of many di↵erent

types. However, for this work, the most relevant gateway types, and the ones we will

cover, are Parallel, Exclusive and Inclusive gateways. Parallel gateways are used to

create parallel flows when all of the outgoing process flows are available, and the

process execution needs to go through every one of them. In contrast, in an Exclusive

gateway, some outgoing flows might not be available. That availability will depend

on the evaluation of a condition, and even when multiple paths are available, the

execution can only follow one of them. Finally, Inclusive gateways also use evaluated

conditions to determine path availability. However, in an Inclusive gateway, the

process participant can take multiple paths if available, unlike what happens at an

Exclusive gateway.

In the BPMN model presented in Fig. 2.1, we have an example of Parallel

and Exclusive gateways. Both of them are represented as diamonds. The di↵erence is

that the Parallel gateway has a “+” sign in the middle, while the Exclusive gateway

contains an “X”. In that example, there is a Parallel gateway indicating that the

user can execute any of the five User tasks. However, a little after taking the chosen

path, the process execution encounters an Exclusive gateway that will check if the

user has already provided the necessary information. If not, the process will take

the user back to the start, and they will have to take a path on the Parallel gateway

8

that is related to one of the missing pieces of information.

Finally, we have sequence flows, which are represented as a solid line with

an arrowhead. They are used to connect elements in the BPMN diagram – e.g.,

connecting two tasks, or connecting a task to a gateway – and they show the order

in which the elements should be gone through.

Although the range of business process concepts is fairly larger than these

select concepts we have covered here, we have decided to limit our review only to

the applicable concepts. Thus, inspired by Dumas et al. [2], who illustrated the

ingredients of a business process, we decided to select only the process concepts

that are relevant to our work and make a diagram portraying their connection (Fig.

2.2).

As shown in the diagram, a business process is mainly composed of Gateways,

Events, Activities, and Tasks. Except for the Events, which are mandatory in all

business processes [2], all other concepts are optional and dependent on the domain,

which is why the diagram portrays them as having “zero or many” cardinality. In

the caption box, the relationships between concepts are further explained.

Figure 2.2: Components of a business process.

9

2.1.2 Camunda Concepts

In Subsection 2.1.1, we have presented a few general process concepts used

in the BPMN standard. Now, we will go over the specifics of Camunda Engine,

which is the Workflow Management System (WFMS) we will be using throughout

this work, and that has its own assortment of features.

A process representation is nothing but a portrayal of how users think that

process should be executed. For this representation to be materialized, there is the

need to use a WFMS, which can set up the infrastructure for running the process

and also monitor its execution. Camunda Engine, the WFMS we decided to use in

this work, will be responsible for tracking the process’s current state at any given

time. It also ensures that the process is executed in the right order.

The first relevant Camunda concept for this purpose is variables. Variables

are a way of adding data to the process so that they can be used in Java classes or for

evaluating sequence flows at gateways. Variables are usually name-value pairs, and

the value can be of various types, such as string, number, boolean, byte array, etc. In

the Restaurant Reservation process from Fig. 2.1, the “Inform desired cuisine” task

could ask for a cuisine variable, which would be a string, while “Inform number

of people” task could ask for a num_people variable, which could be a number.

One way of filling in these variables is by using User Task Forms, also known

as Forms. This feature allows Camunda to ask for the necessary information right

before a specific User task is completed. For that to work, whoever is modelling the

process diagram should register a form inside the User task, and add a form key

and form fields, each field with its own ID, type, and label. Section 5.1 will further

explain these steps.

After the BPMN file is finished and ready to be executed, Camunda provides

a few options for users to run and manage their processes. One of these options

is Camunda Tasklist, which is a front-end application program for executing User

tasks. When executing a process, Camunda Engine will automatically add User tasks

to a list in Camunda Tasklist. Users can then see each task’s related information,

assign a task to a specific user, and complete tasks. When a BPMN file has a User

Task Form, for example, and the user is running the process instance in Camunda

Tasklist, a form will pop up asking the user to fill in the form fields right as they

10

are completing that task.

However, Camunda Tasklist is not the only method of executing a process

instance with Camunda. Camunda Engine provides a Representational State Trans-

fer Application Programming Interface (REST API) based on Jakarta RESTful Web

Services (JAX-RS), which allows any kind of software to use its process engine ser-

vices. The back end of our chatbot will make calls to Camunda’s REST API to

start the process, execute individual tasks and fill in variables without bringing up

Camunda’s Graphical User Interface (GUI). There is a broad range of REST end-

points provided by Camunda. However, in this work, we will only need the following

endpoints:

• POST /process-definition/key/{key}/start – used for starting a process

instance, initializing variables and storing the process instance id

• GET /task?processInstanceId={processInstanceId} – used for getting the

list of all tasks available in a specific process instance

• GET /process-instance/{id} – to find out if a process instance is still run-

ning or it is already finished

• POST /task/{id}/complete – to complete a task, either sending variable up-

dates or not

2.2 Conversational Agents

Conversational Agents have been on the rise since the release of Intelligent

Personal Assistants (IPA) such as Siri, Alexa, Google Assistant, and Cortana, and

even more so with the increasing popularity of IPA devices, e.g., Amazon Echo and

Google Home [9]. These personal assistants can fulfill multiple user requests, such

as checking the weather, setting alarms, playing music, and also interacting with

Internet of Things (IoT) devices, including smart lamps, smart locks, and more [10].

As defined by Gnewuch et al. [5], conversational agents can be classified

regarding either their primary mode of communication (voice-based, text-based, or

embodied) [11], or their context, i.e., whether they have a general or task-oriented

goal. One way of evaluating a CA is by considering its usability, i.e., its e�ciency,

11

e↵ectiveness, and user satisfaction [12]. For example, one trait that makes a CA

rank higher in these three quality attributes is maintaining convoluted conversations.

Recent works, such as a chatbot named Iris [13], have shown that CAs can be used

even in highly-complex mathematical applications. For that to work, though, the

CA needs to have a deeper understanding of what the user is trying to say and

achieve. Fast et al. [13] have created a highly-intelligent text-based CA by using

automata that allow for function composition inside a conversation. This function

composition makes it possible for users to make two di↵erent requests in a single

sentence and have the result of one request be input into the other.

Apart from text-based solutions, a voice-based CA example is presented in

Devy [14]. Bradley and colleagues have considered supporting software engineers

with a voice-based conversational assistant that utilizes the context elements needed

to support software development workflows. Another valuable use of CAs is in

healthcare. Miner et al. [15] have developed a study using CAs that leverage user

sentiment analysis for mental health treatments.

Although the Iris [13] and Devy [14] chatbots were built from scratch, when

building a CA, it is useful to utilize a chatbot framework to avoid recreating all of

the CA logic and interface from the ground up. In the industry, there is a number

of conversational agent frameworks available, such as Google’s Dialogflow1, IBM

Watson2, Facebook’s Wit.ai3, and also a few open-source frameworks, such as Rasa4

and Botpress5.

For this work, the framework we have chosen was Rasa, and towards the end

of Subsection 2.2.1, we will explain this choice. Before that, however, we will go over

a few CA concepts that are relevant to our work. Some of them are shared between

most frameworks, and we will introduce these general concepts in Subsection 2.2.1.

Then, in Subsection 2.2.2, we will present some of the Rasa-specific concepts used

in the development of this work.

1https://dialogflow.com/

2https://www.ibm.com/watson/

3https://wit.ai/

4https://rasa.com/

5https://botpress.com/

12

https://dialogflow.com/
https://www.ibm.com/watson/
https://wit.ai/
https://rasa.com/
https://botpress.com/

2.2.1 General CA Concepts

The majority of CA frameworks are composed of two parts: a Natural Lan-

guage Understanding (NLU) component, which interprets user input, and another

component that decides how the bot should act and reply, which could be viewed

as the chatbot “back end”. The latter is framework-specific and will be explained

in Subsection 2.2.2. In this subsection, we will present some of the concepts that

are not specific, but rather, used by multiple frameworks. Most of these general

concepts from the CA domain are related to the NLU piece since this component is

framework-independent. In the NLU scope, the most significant concepts are intents

and entities, because they have a direct influence on the bot’s understanding of user

input.

To better explain these concepts, it is interesting to use an example. Suppose

there is a CA for assisting in restaurant reservations. If the user has a specific restau-

rant in mind, the bot will book a table at that particular establishment. However,

if the user is not sure where to eat and wants to request restaurant suggestions, the

bot will search for restaurants based on some provided criteria and then send the

results back to the user.

To begin with, an intent is the objective of each user message. So, for exam-

ple, suppose this CA supports two di↵erent intents: request_restaurant, which is

triggered when the user wants to search for restaurants and see all the results, and

book_table, triggered when the user wants to book a table at a specific restaurant.

In that case, whenever the user says “I want to book a table at restaurant X”, the

CA should classify this message as a book_table intent, because the objective of

this message is to reserve a table at an already chosen restaurant, instead of trying

to discover new restaurants.

Moving on, for the CA to be able to capture precise details of the user’s input

and, thus, respond appropriately, we must prepare it to receive entities. Entities

are nothing more than essential information that must be extracted from the user’s

message for the intention to make sense. For example, if the user wants restaurant

suggestions, it would be hard to find relevant places without knowing which cuisine

they are looking for. With that in mind, cuisine could be one of the entities in

this case, and the bot can extract it from the message.

13

Finally, after the user’s message is understood and processed, the bot needs

to determine how to respond to it. In this phase, there is another shared concept

between frameworks that is slots – the only shared concept we will see in this

subsection that is not from the NLU component. A slot is a variable in the CA

“back end” that will store captured entities for later use. Regarding the previous

example, when the user’s desired cuisine is captured as an entity, this information

can be stored in a slot so that the bot can use it to make a successful reservation in

a later step.

Regarding the actual bot responses, each framework has its own technique.

Some of the frameworks are rule-based, which means that every intent has a prede-

fined response mapped out. However, this technique may fall short in certain cases.

Firstly, because it requires a certain amount of prep data for the bot to start working

at all. Secondly, when going into a conversation edge case, the bot can easily get

lost if the developer has not added at least hundreds of conversation paths [16].

To mitigate those issues, we chose to work with the Rasa framework. Rasa

is an open-source CA framework that would allow us to understand its internal

code and modify it if needed. Furthermore, Rasa provides a custom Software De-

velopment Kit (SDK) for its chatbots that allows developers to fully customize the

business logic behind the bot’s actions. This will be vital for making our chatbots

more suitable to our process-aware scenarios.

2.2.2 Rasa-specific Concepts

Since we decided to use the Rasa framework, we will now introduce an over-

view of the specific concepts present in this framework. Rasa consists of two compo-

nents: the previously-mentioned NLU and also Rasa Core, the back-end component

of a Rasa bot. As mentioned in Subsection 2.2.1, the NLU component is responsible

for making sense of the user’s input, while the Core is in charge of deciding what

the bot should say or do next.

We will now explore how some of the common CA concepts that were previ-

ously introduced are e↵ectively used in Rasa, and also describe a few of its particular

features.

As previously explained, the NLU component is responsible for understanding

14

user input and transforming it into a structured output with its respective intents

and entities. In Rasa, the text samples that the bot should use to understand each

intent and its related entities are stored in the nlu.md file. A snippet of the nlu.md

file concerning the previously mentioned restaurant bot example is depicted in Fig.

2.3.

Figure 2.3: Fragment of the nlu.md file from a Restaurant Reservation bot.

The three sentences demonstrated in Fig. 2.3 represent the request_restaurant

intent, and they will be used as a training example for when the NLU tries to un-

derstand user input. In sentences that include entities, the name of the entity -

cuisine - is enclosed in parentheses, while the word that symbolizes that entity’s va-

lue - Swedish or Caribbean, for example - is enclosed in square brackets. However,

a single sentence may not convey all the necessary information for a task. To book

a flight, for example, only knowing the destination is not enough. Other details are

also required, such as departure date (and return date, if applicable), number of

passengers, etc. In our restaurant example, we require the desired cuisine, number

of people, preferred seating area, additional preferences, and feedback.

To fill in these details, Rasa uses the previously mentioned concept of slots,

which is how Rasa Core stores the required information. While entities are used to

extract information from messages, a slot is a kind of variable where that information

will be stored so that Rasa Core can use it whenever needed. For example, the slots

containing user preferences can be used at the very end of the process to finally

make a reservation. Alternatively, the bot could gradually add more filters to the

restaurant search as each slot is filled. If we have a list of restaurants containing

di↵erent cuisines, right after the user chooses a specific cuisine, it could display only

the restaurants that are relevant to their choice.

Regarding the techniques used for slot filling, slots can be filled automatically

from extracted entities, or they can be set through custom actions. In fact, actions

are not only responsible for filling slots, but they actually determine what the bot

will say or do after a specific intent.

15

The actions that are solely responsible for sending a specific message to the

user can be set up as simple utter actions. Due to their simplicity, these actions

do not require coding in Python or any other language, unlike regular custom acti-

ons. Utter actions need to start with the utter_ prefix. Whenever an action has

this prefix, Rasa will search for its template under the responses section of the

domain.yml file, and that template will be the message that is sent to the user.

Custom actions, in contrast, can perform extremely complex operations. One

action may be, for instance, responsible for sending the flight reservation request to

the airline or travel agency server. Since actions are the main part of Rasa Core,

i.e., the bot’s back end, they can be written in any server language, such as Node.js,

.NET, Java, etc. However, Rasa provides a Python SDK, which greatly simplifies

the development e↵ort, and thus, Python is the language we have chosen for our

actions. During development, it is possible to make actions access slots and their

values, so, for example, one can create a condition that sending a reservation request

can only be carried out if all the necessary slots have been filled. That is, even if

the user tries to finalize the booking every time they fill a slot, the reservation will

only be made after all required slots are filled.

An essential type of custom actions is form actions – also known as forms

–, which are responsible for filling slots and verifying if all of the required fields are

loaded. In Rasa, forms create a sequence of interactions to ask the user for required

information in an orderly fashion and without the need of specific intents. As we

have seen before, outside the scope of a form, every time the bot receives a message

from the user, it tries to fit it into an intent. That would raise the problem of

needing to know a priori all the possible answers the user could give and then map

each of these to di↵erent intents. Moreover, what would happen if the bot requested

the number of people for the table and got back a single number without further

context? How would it be mapped into an intent? In such cases, forms are a great

feature to be used.

When configuring a form action, we have to specify its required slots in the

action’s code and then add to the domain.yml file the questions that the bot should

ask when requiring each slot. After sending each request, the bot will expect to

receive a value for that particular slot, and will not try to map the user’s response

16

to any intents. However, if necessary, the bot can transform the response into a type

of data that the slot is expecting. For instance, if it is a boolean slot, it is possible

to transform a “yes” or “no” response into “true” or “false”, or if it is a number

slot, it is possible to make “five” turn into “5”. Later, after all the required slots

are filled, the form can then run some code to submit the collected information to

whichever service.

Finally, the last major concept left to introduce is the concept of stories,

which are conversation examples used to train the Machine Learning model for the

bot’s responses. Rasa utilizes the multiple conversation examples - stories - to decide

the best response in a particular moment by considering its context. They help the

bot decide, for example, which action should be executed after receiving a certain

intent from the user.

Throughout this work, we will edit specific Rasa files, and the reader needs

to have an overview of what these files are and what they do. The following list

describes each of these relevant files:

• nlu.md – provides examples of phrases that should be mapped to each intent

so that the NLU component can properly identify the intent corresponding to

the user input;

• stories.md – delineates conversation paths, including which actions follow

which intents, so that Rasa Core can learn from them and identify the next

action to take at any point in time;

• actions.py – carries the code to be used for each action. As previously

mentioned, actions are usually written in Python due to Rasa providing a

Python SDK, but they can be written in any other server-side language;

• domain.yml – contains a summary of all of the information that is relevant to

the bot, such as intents, entities, actions, etc., so that the bot can understand

what to expect from the other files and identify is any information is missing ;

• config.yml – provides basic configuration for the bot.

17

Chapter 3

Related Work

This chapter will present a few task-assisting conversational agents developed

in the academy and a few process management tools available in the industry. To the

best of our knowledge, there is not much literature connecting the formal concepts

of business processes and conversational agents. However, there have been a handful

of studies towards the implementation of process-guided CAs in the past.

In [17], Toxtli et al. created a tool called TaskBot that aimed to help teams

complete assignments. The authors intended to reduce the onus of context switching

by using the bot to assign tasks to team members and remind them to start or finish

their tasks. This bot would reduce the need for team members to simultaneously

check multiple tools such as Trello, Slack, e-mail, and GitHub. Despite this tool not

using the concept of business process as a workflow, it does utilize the concept of

tasks, even if these tasks are disconnected.

Iris, itself [13], as mentioned in Section 2.2, is also an example of a process-

guided CA, and it supports complex processes by using function composition. After

evaluating their solution, Fast et al. discovered that users executed data science tasks

approximately 2.6 times faster using the Iris chatbot than sklearn and Jupyter. One

significant advantage to their solution, according to participants, is the fact that,

by using a bot, they did not have to remember which functions to call, as Iris would

walk them through the process execution depending on which procedure they wanted

to perform.

In [18], Cranshaw et al. have built and evaluated an app called Calendar.help

whose purpose is assisting in scheduling and rescheduling meetings. The whole pro-

18

cess of setting up meetings is divided into microtasks and macro tasks. Microtasks

are simpler functions that a CA can do, such as sending e-mails and checking invi-

tees’ availability. Meanwhile, macro tasks are more complex, such as rescheduling

a meeting with many invitees. In the latter case, a human agent would step in to

help with the task. This study is closer to ours because their proposed CA also uses

the concept of process workflows – in this case, for meeting scheduling. Cranshaw

et al. developed a process representation that depicts most of the micro and macro

tasks involved in setting up meetings between coworkers, including conflict solving.

Unlike our approach, they opted not to use BPMN for their representation. Howe-

ver, their diagram is still a perfectly valid portrayal of their process, including tasks

and gateways.

In recent years, there has been a rise in the appearance of business process

management (BPM) tools such as Kissflow1, Process Street2 and Pipefy3 that aim

to help businesses and their employees track the execution of essential and recurring

processes. Camunda itself is also a BPM tool. These kinds of tools usually use

features such as checklists, forms, and workflows to ensure all team members are

executing the right task at any given time. Several companies use these tools to

support the execution of their processes.

Nevertheless, when business processes become too large, employees can get

lost in the middle, unsure about which tasks are available to them, or even make

mistakes during the execution [4]. In these cases, these process management tools,

including Camunda, due to their complexity may not help these workers at all.

Therefore, the tool that we will present in this work aims to complement BPM tools

– in this case, Camunda – to make them more user-friendly by leveraging natural

language understanding.

1https://kissflow.com/

2https://www.process.st/

3https://www.pipefy.com/

19

https://kissflow.com/
https://www.process.st/
https://www.pipefy.com/

Chapter 4

Integration Rationale

This chapter aims to explain the rationale behind our work and the imple-

mentation we developed throughout our studies. Workflow Management Systems

(WFMS), as described in Section 2.1, are instrumental in controlling the process

execution; however, they typically lack a flexible user experience. On the other

hand, CAs provide a better user experience, but they lack awareness of the process

state. CAs also need an initial setup with intentions, entities, etc. For these reasons,

combining business process concepts and CA concepts would allow the creation of

PACAs and serve as a building block to enhance WFMS. For this purpose, in this

section, we leverage the Theoretical Background and Related Work presented, res-

pectively, in Chapter 2 and Chapter 3, to implement a solution that combines the

business process and CA domains. This solution will allow us to generate a bot that

could decide which tasks are available in a process instance and help guide the user

throughout its execution.

Fig. 4.1 portrays the expected operation of our solution. Whenever a user

sends a message to the bot requesting advice on how to start a process, the bot

will reply with all of the available tasks. The user will, then, choose to execute any

task that is available, and as soon a task is completed, the bot should send the next

available tasks until the process is finished. In case the user tries to execute a task

that is not available, the bot should prevent this execution, by informing to the user

that the task is not available.

The first step in building such a bot was to take a subset of concepts from

the business process domain and analyze how each of these concepts is related to

20

the terms used in conversational agents.

Figure 4.1: Overview of the expected operation of the Process-Aware Conversational Agent.

The business process concepts we decided to examine for now are:

• task

• gateway

• sequence flow

• start event

• end event

• process variable (Camunda)

• user task form (Camunda)

Similarly, the CA concepts that were chosen:

• intent

• action

• slot

• story

Under business process concepts, as explained in Section 2.1, there are both

general and Camunda-specific concepts, the latter identified with “Camunda” inside

21

parenthesis. Meanwhile, regarding CA concepts, it is worth noting that each fra-

mework has its own characteristics and feature. Hence, the CA terms listed above

are primarily valid for the Rasa framework. Other environments, however, can have

analogous attributes using other terms.

To properly formulate this connection between business process and CA con-

cepts, we have gone through two phases. First, we tried building a process-inspired

bot with only Rasa, without using any Workflow Management System (WFMS).

Although this technique did not provide us with a substantial connection between

business process and CA concepts, it was a necessary step towards understanding

the di↵erences between both domains and how they could be connected. This first

phase will be described in Section 4.1.

Then, in the second phase, we successfully integrated Rasa with Camunda,

a WFMS. This integration has allowed us to form a more solid connection between

the business process and CA domains and, thus, create an e↵ective Process-Aware

Conversational Agent. This approach will be the primary base for our work, and it

will be described in detail throughout Section 4.2 and Chapter 5.

4.1 Manual Integration

In this section, we start a preliminary discussion about how a process-inspired

bot could be built with only a CA framework - in this case, Rasa -, without using

any Workflow Management Systems. Therefore, in this section, we will not be using

any Camunda-exclusive concepts. The goal here is to manually associate concepts

from the business process and CA domains in a way that, after taking a BPMN file,

looking at its components, and writing the bot’s code, Rasa will be solely responsible

for the process execution, without any aid of workflow engines or specialized process-

guiding tools. Since this first bot will not use any of these tools, we cannot call it

process-aware. That is why we refer to this first implementation as being process-

inspired. Even though this is not a scalable solution, it was part of this work’s

evolution and a necessary step towards an actual Process-Aware Conversational

Agent. We will take a simple look at how one can execute a manual integration.

However, for simplicity reasons, in this work, we will not go deeply into explaining all

22

Figure 4.2: Fragment of the stories.yml file from a Restaurant Reservation bot.

the steps to making this manual integration. Instead, we encourage the integration

of Rasa with a Workflow Engine, for which you can find detailed instructions in our

PACA Generation Guide, in Chapter 5.

To begin a manual integration, the first relevant process concept to be exa-

mined is the start event, which should be represented as an intent. In this work,

we are covering processes that are initiated by a user, and an intent is needed

to help the bot understand when a user asks to start a process. Going back to

the Restaurant Reservation process represented in Fig. 2.1, we could call it a

start_restaurant_reservation intent. It would be triggered when a user said

something like “I would like to book a restaurant”, and this intent would provoke

the start of the process.

After identifying the first intent, the bot will try to match it to a set of

applicable stories. Fig. 4.2 demonstrates a fragment of the stories.md file for a

Restaurant Reservation bot. In the figure, there are two stories. Each story has its

beginning marked by double hash signs (##), followed by that story’s name. Then,

each intent is preceded by an asterisk (*), and each action is preceded by a hyphen

(-). The first of our two stories begins with the greet intent, and the other, with

the start_reservation intent. If the user says “hi”, it will go into the greet story,

which is not directly related to the process but still needs to exist to enable the

bot to carry out more natural conversations. In contrast, if the user already starts

the conversation saying they want to book a restaurant, the conversation flow will

automatically go into the second story.

The process’s sequence flows, in this manual integration method, are contai-

ned in the stories. In Fig. 4.2, the fact that utter_okay is followed by action_ c

23

Figure 4.3: Fragment of the BPMN diagram for the “User Mood” process.

start_reservation means that that latter should happen right after the former,

just as a sequence flow would represent the movement from one task to the next.

Regarding process gateways, the way they can be constituted in Rasa is by

using multiple stories, with slots being used to di↵erentiate them if needed. To il-

lustrate this scenario, we will take a look at a di↵erent process from the Restaurant

Reservation one we have been examining so far. Even though the Restaurant Re-

servation BPMN contains gateways, they are merely used to check if the reservation

can be made. Now, we are going to see how gateways can actually create a branch

in the process flow.

For this purpose, we will examine a “User Mood” process, in which the bot

asks the user how they are feeling, checks if they are happy or sad, and then replies

accordingly. If the user is happy, the bot should then reply with a message saying

“Great, carry on!”, whereas if the user is sad, in an attempt to “cheer the user up”,

it should either show a picture of a tiger or a dog, depending on whether it is day

or night. Fig. 4.3 represents a small fragment of this “User Mood” process, while

Fig. 4.4 shows its respective Rasa model.

According to the diagram shown in Fig. 4.3, if there were only two possible

responses – one for when the user is happy and another for when the user is sad –,

there would only be one gateway (to check on the user’s mood), and consequently,

only two stories would be necessary. However, when the user is sad, the bot needs

to check the time of day and reply adequately. Hence, there comes another gateway,

and therefore one more story, to check the current time and show the appropriate

picture.

24

Figure 4.4: Fragment of the stories.yml file from a “User Mood” bot.

In this manual integration scenario, the act of checking the gateway and

deciding on one path or another relies solely on Rasa features. In Rasa, the decision

can be made based on di↵erent intents or based on slots set by custom actions.

For example, the decision at the “user mood” gateway, as can be seen in Fig. 4.4,

depends on the intent that follows the utter_greet action, which sends a message

saying “Hey! How are you?” to the user. If the user replies saying they are happy,

then the computed intent will be mood_great, and the bot will fall into the first

story. If the user replies saying they are sad or something similar, then the gauged

intent will be mood_unhappy, leading the bot to the second or third story.

In the case of an evaluated mood_unhappy intent, what comes next is a cus-

tom action. The check_day_or_night action will get in contact with the system’s

clock to check for the current time. However, the only way to leverage the acqui-

red information to decide which action to take is by using slots. As explained in

Section 2.2, slots are variables that store crucial information required by the bot.

In this case, there is a slot called timeofday, which can be set to either day or

night, and its current value will determine which of the stories the bot will choose

to follow. Each story that accesses the timeofday slot value must have a line con-

taining either - slot{timeofday: day} or - slot{timeofday: night}, as that

will represent which value is related to that specific story. For example, in Fig. 4.4,

user is sad : day should be followed when timeofday slot value is day, while

user is sad : night should be followed when the value is night. This verifi-

25

cation must be made right after the check_day_or_night action because that is

the action that will set the slot value, which will be crucial for determining the

appropriate story.

In this particular process fragment, there is no end event. However, if there

were such an event and the tasks preceding it were required, this evaluation could be

done with slots and custom actions. In that case, every task would need a boolean

slot indicating its execution status. They could all start as false, and each task

execution would set its respective slot to true. After each task, a custom action

would run to check which slots are true and which are false. Lastly, when all slots

were true, that would mean that all tasks had been executed, and thus, the process

execution has reached the end event. The bot could then inform the user that they

have finished the process.

4.2 Integration with Workflow Engine

In this section, we demonstrate how we have used a Workflow Management

System to control the general execution of a BPMN process, more specifically, dele-

gating the decisions inside the process, such as the availability of certain tasks after

a gateway, to the WFMS. Although in this work we have decided to use Camunda

Engine, any other WFMS could technically replace it. However, to use a system

other than Camunda, some changes would have to be made since we use concepts

and tools that are Camunda-exclusive, as explained in Subsection 2.1.2.

According to Section 4.1, for the manual integration, we used only Rasa fe-

atures, such as slots and stories, to guide the conversation, and hence, the process

execution. Although that did work for that specific scenario, that form of implemen-

tation is neither process-aware nor scalable. It is not process-aware because, even

though that technique uses the process to help guide the bot’s implementation, Rasa

does not use the process itself during the conversation, which is why we referred to

that bot as process-inspired. Also, the manual approach is not scalable because,

in that scenario, it was not possible to generalize the code generation for the bot.

Each scenario would need a completely di↵erent implementation, with not much

re-utilizable code. Therefore, an extensive process would increase the complexity of

26

generating an appropriate bot, taking a considerable amount of time and e↵ort.

By integrating Camunda, a WFMS, with Rasa, it becomes easier to write

the bot’s code. Since Camunda will be responsible for evaluating all significant

decisions, this chore is removed from Rasa. This paradigm shift is only logical as

well since a WFMS is specialized in following and managing business processes and

workflows, whereas Rasa is not.

Our proposed solution is to be executed in two phases: configuration and

usage. The former is shown in the upper section of Fig. 4.5, while the latter is

in the image’s lower section. During the configuration phase - upper section -,

the process analyst has to create a process model in Camunda Modeler (a desktop

application for modelling BPMN diagrams) and make necessary adaptations to the

model according to the PACA Generation Guide presented in Chapter 5 (Fig. 4.5.1).

Then, the process analyst can deploy the process model to Camunda Engine (Fig.

4.5.2). Later, the developer will read this BPMN and use the PACA Generation

Guide to convert each process feature that is present in the BPMN file, such as

tasks and events, into Rasa files (Fig. 4.5.3). Finally, with the process deployed to

Camunda Engine and Rasa fully configured, as soon as the bot is up and running,

Rasa will be able to communicate with Camunda Engine, forming a fully functioning

Process-Aware Conversational Agent (Fig. 4.5.4).

With a working bot, the user can then utilize it to navigate the process. As

presented in the lower section of Fig. 4.5, whenever a user sends a message asking

to start a process and requesting advice on how to start it (Fig. 4.5.5), the bot will

list all of the tasks that are available to the user.

Then, the user can start executing an available task. It is worth noting that,

even though in Camunda a user can ”claim”a task to start its execution and then

”complete”it after they are done, in this work, we will not support the claiming of

tasks, only completion. This means that when a user informs they are “booking a

flight” or “have booked a flight”, both of these sentences will mean that the user is

trying to complete (not claim) a task in Camunda.

Since a task might not be available at that moment, Rasa can prevent the

completion of unavailable tasks (Fig. 4.5.6) since it has access to the list of available

tasks at any given moment. In fact, Rasa will prevent the completion of that task

27

Figure 4.5: Overview of the necessary steps to configure and use the Process-Aware Conversati-

onal Agent.

even if the user insists. That is an essential feature for rigid processes, as it might be

necessary to follow a specific order of task execution. Although one might argue that

Camunda should be the one responsible for blocking the completion of an unavailable

task, in this case, Rasa is doing so because it might need to ask the user for task-

related information before sending the task completion request to Camunda. This

procedure for completing tasks will be further explained in the PACA Generation

Guide, in Section 5.3.

After the user informs they are executing or have executed a task (Fig. 4.5.7),

if that task is available, the bot will, in turn, once again reply with the next available

task(s) (Fig. 4.5.8) until the process is finished as a whole.

In what follows, we shall see a concrete connection between business process

28

and CA concepts. We will describe the step-by-step towards building a Process-

Aware CA, connecting each part of the BPMN model in Camunda to the Rasa

framework.

29

Chapter 5

PACA Generation Guide

The purpose of this chapter is to showcase step-by-step instructions on how

to generate your own Process-Aware Conversational Agent, given you have some

knowledge in Python and BPMN. This guide also considers that the process has

already been modelled into a BPMN diagram. For this guide, we will be using Rasa

1.8.2, Rasa SDK 1.8.0, Camunda BPM Platform 7.15.0, and Camunda Modeler

3.4.1.

This guide consists of the following steps:

1. Preparing the BPMN

2. Building the default Rasa bot

3. Adding process-specific pieces to the Rasa bot

4. Running Camunda and the bot

After these four steps, there is one last section in this chapter (Section 5.5),

which describes the conceptual connection between the business process and CA

domains. That last section aims to give the reader a clearer understanding of how

concepts from each domain are connected and facilitate the adaptation of the bot’s

code if needed.

Throughout this guide, we will be exploring a “Trip Planning” scenario we

have elaborated to explain each step of our PACA implementation. “Trip Planning”

serves as an excellent example for our studies because it is well known and has

dependencies between tasks. The code for the “Trip Planning” bot that will be

30

created throughout the guide is available on GitHub1. The guide we are about to

present is already comprehensive; however, it is helpful to have the code in hand

since it has a lot of boilerplate code that can be copied when creating your own

PACA.

Before we dive into more technical matters, we first need to explain the

process, with its tasks and dependencies. In this process, the conceptualized tasks

are the following:

• booking a flight

• booking a hotel

• booking a transfer

• booking a tour

Fig. 5.1 presents the diagram for this process, which includes the four desig-

nated tasks, the process gateways and sequence flows.

Figure 5.1: BPMN diagram for the “Trip Planning” process.

When elaborating this scenario, the team has decided to enforce the depen-

dencies between particular tasks. For example, it is risky to book a hotel before

booking a flight from our point of view. That is because, before purchasing the

flight ticket, you do not have 100% certainty of the day on which you will be arri-

ving at your destination. For instance, a good deal could appear and induce you to

book a flight that would arrive one day earlier or later than you originally intended,

and if you had already booked the hotel, that could be a problem. That is why we

presumed that one should only book the hotel after purchasing the flight ticket, and

we wanted to portray this dependency in the process.

Regarding transfers, one may or may not want to book a transfer between

the airport and the hotel, so we made this task optional, which is why there is a path

1https://github.com/luis-f-lins/process-aware-conversational-agent

31

https://github.com/luis-f-lins/process-aware-conversational-agent

circumventing this task. However, if the user does want to book a transfer, they

first need to have already booked both the flight and the hotel, since the transfer

company would need both the arrival and departure dates and also the hotel address.

Thus, we added a requirement that the transfer should only be booked after booking

the flight and hotel.

Finally, we have tour booking, which is the last part of the process and can

be executed right after booking the hotel or the transfer, depending on whether the

user chose to book a transfer or not. In this scenario, for simplicity reasons, we

decided to also portray the tour booking as required. Then, after booking the tour,

the user reaches the end event, finishing the process. The possible execution paths

can be seen as:

1. FLIGHT -> HOTEL -> TRANSFER -> TOUR

2. FLIGHT -> HOTEL -> TOUR

Now that the “Trip Planning” process is explained and its BPMN diagram

has already been modelled (Fig. 5.1), for it to work on our PACA, there are some

minor adjustments that need to be made to its BPMN file. The following section

will further explain these necessary modifications. When creating your own PACA

with a di↵erent process scenario, you will also need to execute the following steps

on your BPMN file after your process has been modelled.

5.1 Preparing the BPMN

This section will go through some steps for preparing the BPMN file for

the Process-Aware Conversational Agent. These initial steps will be executed in

Camunda Modeler, a desktop application program for modelling BPMN process

diagrams. It allows a user to not only visually model a BPMN workflow but also

edit di↵erent properties that are needed for process execution. Camunda Modeler

can be downloaded straight from Camunda’s website2, and this guide presumes that

this program is already installed.

2https://camunda.com/products/camunda-platform/modeler/

32

https://camunda.com/products/camunda-platform/modeler/

5.1.1 Setting general process properties

After going into Camunda Modeler and loading your BPMN file, the first

step is making sure your process has a “process definition key”. When you click

on a blank space in the canvas, it should show on the right sidebar an Id field that

maps to the “process definition key” (Fig. 5.2). You need to set this to an Id with

no spaces, and it will be used later while writing Rasa files. In this case, the process

Id will be simple_trip_planning_optional.

You also need to make sure the process is set as executable, otherwise Ca-

munda Engine, the process engine we will later use, will not be able to run any

instances of this process definition.

Figure 5.2: Process details shown in the sidebar of Camunda Modeler.

5.1.2 Setting each task’s type

Then, you should set a type for each task, making each of them either a

User or Service Task, which are the types of tasks that this guide supports. You can

choose the task type by clicking on a task and then on the wrench icon that appears,

as shown in Fig. 5.3. The rule is: if it is a task that can be done automatically by

the system, it should be a Service task.

However, it is worth noting that all Service tasks need to have the “Imple-

mentation” field filled out, as shown in Fig. 5.4a. This requirement means that the

developer needs to implement a service that will be connected to that Service task

33

and have it running through an expression, Java Class3 or another supported imple-

mentation method. If there is a Service task with no implementation, the process

execution will fail when reaching that task.

In this “Trip Planning” process, all tasks are User tasks, which means they

all require user participation – the user will have to explicitly inform the bot that

they have completed a task.

Figure 5.3: Action Menu shown in Camunda Modeler.

5.1.3 Configuring User tasks

For each User task, you need to click on it and, on the sidebar (Fig. 5.4b),

make sure each of them has an Id (Fig. 5.4b.1), with no spaces, and a name (Fig.

5.4b.2), which can and should contain spaces because it will be used when presenting

the available tasks to the user. The names of all available tasks will be listed

whenever the user completes a task or asks something like “What is still left to do?”

(Fig. 5.5).

5.1.4 Requesting information with User tasks (optional)

A User task might require information or not. In this “Trip Planning” exam-

ple, when the user completes the “Book flight” task, the bot asks what the flight

date is, so that it can store the date in a process variable in Camunda (Fig. 5.6a).

In contrast, when the user completes the “Book tour” task, no further information

is requested, and the process is finished (Fig. 5.6b).

3https://docs.camunda.org/get-started/java-process-app/service-task/

34

https://docs.camunda.org/get-started/java-process-app/service-task/

(a) Service task details.

(b) User task details.

Figure 5.4: Task details shown in the sidebar of Camunda Modeler.

Figure 5.5: Fragment of a conversation showing the now_what intent.

To make the bot request information in a User task, you need to add a form

to the task. Do not mistake Camunda forms, examined in this subsection, with Rasa

forms, presented in Section 2.2.2. This guide will come back to Rasa forms later, in

Section 5.2, but for now, all mentioned forms are Camunda’s User Task Forms.

This process needs two of these forms, one for the “Book flight” task and

another for the “Book hotel” task. The “Book flight” task, as previously mentioned

and presented in Fig. 5.7a, should ask for the flight date, which will be stored in a

variable called flightDate. This process only stores the flight date without using

it later, but it could be used for evaluating gateway sequence flows or in a service

task if needed.

The “Book hotel” task (Fig. 5.7b), for instance, will require some infor-

mation that will indeed be used. However, unlike the “Book flight” task, which

requires the flight date, the “Book hotel” task will not ask for the hotel name.

This task will need to ask for a piece of information that is more essential, which

is whether the user wants to book a transfer or not. According to Fig. 5.1, the

“Book transfer” task should be optional, and thus, there should be a variable called

userWantsToBookATransfer, that can be evaluated at the proper gateway. First,

35

(a) Booking the flight, which requires information.

(b) Booking the tour, which does not require infor-

mation.

Figure 5.6: Fragments of conversations.

the bot will ask “Do you want to book a transfer?” as soon as the user completes

the “Book hotel” task. Then, based on the user’s response, this variable will be

filled with either true or false, and Camunda Engine will use its value to decide

whether to present the “Book transfer” task or not.

With some extra work, the “Book hotel” task could even request two pieces

of information, for example, the userWantsToBookATransfer variable and also the

hotel name. However, for simplicity reasons, this guide will cover the scenario of

requesting only the most relevant piece: the userWantsToBookATransfer variable.

To create forms for requesting information, you need to click on the respective

task and go to the Forms tab on the sidebar, presented in the two sub-figures of

Fig. 5.7. The form key (Fig. 5.7.1) is a name that should represent what this form

will request, and it will be used as an action’s name in Rasa, so it is vital to choose

a name with no spaces. This name should be something like ask_X, with X being

the required information, such as ask_flight_date. Then, for each information

requested, add a form field (Fig. 5.7.2) by clicking on the button with the plus sign

(+) next to Form Fields. Each form field needs an ID (Fig. 5.7.3), which will be the

name of the process variable, a type (Fig. 5.7.4), and a label (Fig. 5.7.5), which is

essentially the question that the bot will ask to request that information from the

user. If you want a task to request more than one piece of information, you can click

on the button with the plus sign (+) again to add more fields, filling in the details

for each new variable. In contrast, if it is not necessary to request information in

any User task, you do not need to create any forms.

36

(a) For the “Book flight” task. (b) For the “Book hotel” task.

Figure 5.7: Form tab shown in the sidebar of Camunda Modeler.

5.1.5 Configuring gateways

In regards to gateways, this guide has been tested with Exclusive, Inclusive,

and Parallel gateways. After choosing the right type for each gateway, if there are

any Exclusive or Inclusive gateways in the process, i.e., gateways whose outgoing

flows are supposed to have conditions, you need to configure these conditions. To

do that, click on each outgoing sequence flow, and then, as demonstrated in Fig.

5.8, under Condition Type (Fig. 5.8.1), you should choose Expression. Inside the

Expression field (Fig. 5.8.2), type in something like ${variable} or ${!variable}.

The $ sign and curly braces are necessary. Unless you are configuring variables

outside of Camunda Modeler, such as in a Java class, you need to use variables that

are present in a previously created form. It is also worth noting that you do not

need to give a semantic Id to each sequence flow; you can leave them as they are.

5.1.6 Setting up start and end events

Finally, you need to make sure that a start event is connected to the first

task of the process and the last task of the process is connected to an end event so

37

Figure 5.8: Sequence Flow details shown in the sidebar of Camunda Modeler.

that the process instance can end right after the user completes the last task.

5.2 Building the default Rasa bot

From this section on, it is assumed that your BPMN file already satisfies the

following conditions:

• the process has a start and end event

• the process has an ID (process definition key)

• each task has an Id (task definition key) and a name

• each task that requires information has a form, with a form key and form

fields, each form field with an ID, type, and label

• all tasks that require user action are configured as User tasks

• all service tasks have an implementation configured

• if there are any Exclusive or Inclusive gateways, each sequence flow coming out

of those gateways has an expression that evaluates the appropriate variable(s)

The guide will now go over the steps for building the base of a Process-

Aware bot. Every bot built with this guide will need to have the following intents

38

and actions, regardless of the process scenario. These pieces are necessary for the

bot to carry out a more natural conversation and better understand the user’s input.

5.2.1 Planning default intents

For this guide, the default bot needs to have at least three intents:

• greet

• affirm

• deny

The first one will be responsible for welcoming the user when they say “hello”

or any other greeting. The other two will be responsible for understanding when the

user says “yes” or “no” and mapping their response to the affirm or deny intents.

These last two intents will be especially useful when requiring boolean information.

5.2.2 Planning default actions

Unlike the affirm and deny intents, which are merely for the bot’s un-

derstanding, the greet intent needs to be followed by a bot’s response. Since

responses are sent by actions, you need to create a simple utter action called

utter_greet. Then, another action that needs to be written in this initial moment

is the utter_default_fallback action, which will be the bot’s default response

when it does not understand what the user means.

Therefore, for this initial part of the “Trip Planning” bot, you should have

two actions:

• utter_default_fallback

• utter_greet

To implement the three intents and two actions mentioned, you will need to

edit three files: nlu.md, domain.yml and stories.md. The initial editing of these

files will be covered in subsections 5.2.3, 5.2.4 and 5.2.5.

39

5.2.3 Adding default intents to the nlu.md file

The nlu.md file will be responsible for providing examples of phrases that

should be associated with each intent. As shown in Fig. 5.9, each intent should be

followed by phrases that represent it. For this step, the more phrases you can come

up with that could portray an intent, the better.

Figure 5.9: Fragment of the nlu.md file from the “Trip Planning” bot with only default intents.

5.2.4 Adding default intents and actions to the domain.yml

file

In the domain.yml file, as shown in Fig. 5.10, you have to write the intents

listed above under the intents section of the file (Fig. 5.10.1). Meanwhile, the

actions have to be listed under actions (Fig. 5.10.3). Since these first actions are

going to be used only for sending a response to the user and nothing else, they can

be simple utter actions, as explained in Section 2.2.2. Their names need to begin

with the utter_ prefix, and their respective templates, i.e., the messages that will

be sent by the bot during these actions, need to be added under responses (Fig.

5.10.2). The domain file containing these default intents and actions is shown in

Fig. 5.10,

40

Figure 5.10: Fragment of the domain.yml file from the “Trip Planning” bot with only default

intents and actions.

5.2.5 Configuring default stories in the stories.md file

The stories.md file, represented in Fig.5.11, will be responsible for providing

conversation paths, i.e., which actions should follow which intents. In this initial

step, you only need to add a story called greet. Here, in the stories file, as previously

explained, the story name is preceded by double hash signs (##). The bot will not

use these names; they are only used to improve code understanding. Then, under the

story name, each intent is preceded by an asterisk (*), and each action is preceded

by a hyphen (-). So, the picture shows that the greet intent should be followed by

the utter_greet action and then action_listen, which means that the bot will

stop and wait for new messages coming from the user.

The affirm and deny intents do not appear in this stories.md file because

they are only used for mapping values inside custom actions, as will be shown later

in the guide. The utter_default_fallback action will also be left out of this

file because, as the name indicates, it is used by default whenever the bot cannot

determine the next step.

Figure 5.11: Fragment of the initial stories.md file from the “Trip Planning” bot.

41

5.3 Adding process-specific pieces to the Rasa bot

Now that default intents and actions have been covered, the guide can now

go over more process-specific segments. Some of the intents and actions presented

from here on out will vary greatly from process to process. Nevertheless, there will

still be some intents (such as now_what) and actions (such as start_process and

whats_next) that will need to be added to every bot, just like the default intents

and actions.

There is a reason why these seemingly general intents and actions are being

classified as “process-specific” instead of “default”. While default pieces are comple-

tely unrelated to the process itself, the intents and actions covered by this section are

considerably more connected to the business process domain. They will sometimes

even use process variables, whereas the default ones will never use process-specific

information.

To start adding these process-specific pieces to the bot, you need to examine

the User tasks and events that the process contains. Going back to the process

model, Fig. 5.1 shows that the “Trip Planning” process has four User tasks:

• Book flight

• Book hotel

• Book transfer

• Book tour

The “Book flight” task comes after a start event, which means that it is the

first task in the process. Meanwhile, the “Book tour” task is followed by an end

event, which means it is the last. The guide will now demonstrate how these tasks

and events are translated into process-specific intents and actions.

5.3.1 Planning process-specific intents and adding them to

the nlu.md file

For the start event, the intent that should be created is called start_process.

It will be responsible for understanding when the user says a sentence like “I want to

42

plan a trip”, which should, in turn, start the “Trip Planning” process. This intent

needs to be added to any Process-Aware Bot created using this guide, not just to

this “Trip Planning” bot. However, the phrases you will want to represent this

intent are more context-specific, so they will greatly vary depending on the process

scenario. For this example, the chosen sentences for this start_process intent are

shown in Fig. 5.12.1, which is a screenshot of the updated nlu.md file, providing

sentence examples for each intent.

Figure 5.12: Fragment of the nlu.md file from the “Trip Planning” bot showing the

start_process, now_what and book_flight intents.

Then, you need an intent for when the user is “lost” in the process or un-

sure about what tasks are available at that moment. You should call this intent

now_what, and it will be triggered with phrases shown in Fig. 5.12.2. This intent,

just like the default ones, needs to be added to every bot. However, it is not ca-

tegorized as a default intent because it is more connected to the business process

domain.

Each task should have its respective intent, for when the user indicates that

they want to start it. For example, “I want to book a flight” for starting the flight

task, and “I want to book a tour” for starting the tour task. In Fig. 5.12.3, it is only

being shown one task intent with its respective sentences, which is book_flight,

but there are three more pieces not shown in this picture that are analogous to this

43

last one, one for each of the other tasks (book_hotel, book_transfer, book_tour).

It is relevant to highlight that, even when a user says they want to start a

specific task, it does not mean that the task will be started. That is because it may

not be available at that moment, and the bot needs to block its execution until it is

available. The guide will demonstrate how this is done when describing the creation

of task actions (Section 5.3.6).

So far, the NLU component should have the following intents:

• start_process, to represent the user asking to start the “Trip Planning”

process

• now_what, to represent the user asking what is left on their list after they have

completed some tasks

• a set of four intents representing the user saying the task they want to start:

book_flight, book_hotel, book_transfer and book_tour.

5.3.2 Planning process-specific actions

For each process-specific intent, you also have to create their respective res-

ponse actions, i.e., what the bot should say or do after each of these intents is

recognized. Actions can be either “utter actions”, such as the utter_greet action

that has already been covered, or “custom actions”, which are fragments of code

that can perform more complex tasks, such as API requests, conditionals, etc. Acti-

ons are utilized by Rasa Core, which is the bot’s back end, and the creation of these

actions will be described in what follows.

For a PACA, the bot should use custom actions to collect information from

the user and make calls to Camunda API. The API, in turn, will help the bot start

and navigate the process. At the outset, two actions have to be added to every

Process-Aware Bot created using the guide. They are:

• start_process, a custom action that will make a call to the Camunda API

to start an instance of the deployed process.

• whats_next, a custom action that puts together a message containing all the

currently available tasks, or, if the process is finished, informs the user they

44

are done.

Then, there are actions that heavily depend on the specific process that is

being examined. For this “Trip Planning” scenario, the following actions should be

created:

• a set of four custom actions, with the same name as their corresponding intents

(book_flight, book_hotel, book_transfer and book_tour), each meant to

be executed right after its respective intent – these actions will depend on the

specific User tasks in the process.

• two form actions (ask_flight_date and ask_book_transfer) that will ask

the user for information and store it for future use – the number of form actions

will depend on how many tasks require information.

First, this guide will cover the essential parts of each action in the actions.py

file, and then it will demonstrate how to add them to the domain.yml and stories.md

files.

5.3.3 Initial configuration of the actions.py file

In actions.py, you need to start by importing required Python packages

and setting global variables. Fig. 5.13 illustrates these imports.

Figure 5.13: Fragment of the actions.py file from the “Trip Planning” bot showing the imports.

In the Process-Aware bot, there should be some global variables, and they

will be set in di↵erent places of the code:

• processKey – will be set in the global scope and identifies the process definition

independently of its running instances;

45

• taskGetUrl – will be set in the start_process action, and it is the endpoint

used to retrieve all the available tasks at a given moment;

• processInstanceGetUrl – will be set in the start_process action, and it is

the URL that will be used to see if the process instance is still running or is

already finished;

• processInstanceId – will be set in the start_process action and stores the

Id of the process instance after it is started;

• currentTaskId – will be set in each task action right after the user starts that

task, and it will store the Id that Camunda attributes to the task after it has

begun

In this file, there also needs to be an auxiliary function called completeCurrent c

Task (Fig. 5.14). This function will send an API request to complete the current

task. The function knows what the current task is by accessing the global variable

currentTaskId, which will be set after the user informs they are executing or have

executed a specific task. This will be further explained in the “Creating task acti-

ons” step. If any process variables need to be updated while completing a task, this

function will send the updated variable value in the POST payload. Otherwise, it

will send an empty object, meaning there are no variables to be updated.

Figure 5.14: Fragment of the actions.py file from the “Trip Planning” bot showing the

completeCurrentTask auxiliary function.

5.3.4 Creating a start_process action in the actions.py file

For the start_process action, Fig. 5.15 will illustrate each step that needs

to be done.

In Fig. 5.15.1, located right under the imports, the global variable processKey

should be defined. It does not need the global keyword because it is already located

46

in the global scope and will only be read and not modified. This variable will need

to carry the value of the process definition key that was set in Camunda, in Fig. ??.

Then, a StartProcess class is created. It inherits from the Action class.

This class should have a method called name (Fig. 5.15.2) that returns the name of

this action. It is through this name that this action is going to be referenced in the

domain.yml and stories.md files. Meanwhile, the run method is the one that will

truly implement what the action will do. In this start_process action, three global

variables need to be set, as they will be later read by other actions. They are first

declared as global in Fig. 5.15.3, but will only be defined later in Fig. 5.15.6. They

can only be defined later because they will need to know the process instance ID,

which is only obtained after the process has been started. To better explain this, it

is useful to follow the process life cycle in Camunda Engine: With the process key

set in Fig. 5.15.1, the bot can start a process instance of the deployed BPMN. Each

instance will have a specific ID, and this ID will be stored throughout the entire bot

execution, so that it is always referring to the same instance since the beginning and

not any other instance that might be running.

To start the process, first, you need to put together the URL that the bot

needs to call to start the process (Fig. 5.15.4). Before making a POST request to

it, you need to create the POST request payload (Fig. 5.15.5). This payload will

initialize every process variable you will need during process execution; otherwise,

it will not work when you later try to set values to these variables. It is good to

keep in mind that each process variable – in this case, userWantsToBookATransfer

and flightDate – will also need to be added as Rasa slots. However, this addition

will be covered later on.

With the URL and payload ready, you make the request using the requests

package (Fig. 5.15.6). In the JSON object that comes in the response body, there

will be a key called id, whose value is the process instance ID, and this will be

used to set the global variable processInstanceId. Both the taskGetUrl and

processInstanceGetUrl global variables will use processInstanceId in them (Fig.

5.15.7). The taskGetUrl variable will later be used in other actions to see if a specific

task is available or to get all the available tasks, while processInstanceGetUrl will

be used to check if the instance is still running or has already been finished.

47

Subsequently, in Fig. 5.15.8, the bot needs to utter a simple message to the

user, saying the process is being started, and finally, in Fig. 5.15.9, the action ends

with the reset of all slots. This reset is necessary for when the user wants to start

a new process instance in the middle of the execution of another instance, so that

previous Rasa slots are not carried to the new execution. Fig. 5.16 shows an excerpt

of the conversation from when a user asks to start the process.

Figure 5.15: Fragment of the actions.py file from the “Trip Planning” bot showing the

start_process action and global variables.

Figure 5.16: Fragment of a conversation as a user asks to plan a trip.

48

5.3.5 Creating a whats_next action in the actions.py file

After finishing the start_process action, the next step is creating the whats_ c

next action, which will put together a list with the available tasks and send it to

the user.

This action will run in three scenarios:

• after the start_process action

• after each task is finished

• whenever the bot identifies the now_what intent coming from the user (The

sentences that trigger this intent can be seen in Fig. 5.12)

The code for the whats_next action can be seen in Fig. 5.17. The image is

numbered for a clearer understanding of each part of the code.

In Fig. 5.17.1, just like in the start_process action, there should be the

action’s name. Then, in Fig. 5.17.2, you need to make a GET request to the

taskGetUrl variable to retrieve all the available tasks at that moment. Another

GET request should be made (Fig. 5.17.3), but now to the processInstanceGetUrl

endpoint, which will provide information about the process instance – more specifi-

cally, if it is still running.

If this GET request responds with status code 404, then that means the

process instance has already been finished (Fig. 5.17.4). In that case, the bot shall

inform the user so, with the message “Congratulations! You’re all done!”. This type

of exchange can be seen in Fig. 5.6b.

Conversely, if the response status code is not 404 and the JSON object in

the response body has at least one item (Fig. 5.17.5), this means that the process is

still running and has at least one available task. In that case, the bot should utter a

message indicating it will send a list of available tasks, and in Fig. 5.17.6, it should

iterate over these tasks, listing them one by one. The resulting list will contain the

“names” of each task, which have been defined in Camunda, as shown in Fig. 5.5.

That is why it is crucial that all task names are absolutely clear and understandable

by the user. Finally, in Fig. 5.17.7, the action ends after returning action_listen

as a follow-up action. This means the bot will stop and wait for the user to say

49

which task they want to execute next. An example of this conversation path can be

seen in Fig. 5.6a.

Figure 5.17: Fragment of the actions.py file from the “Trip Planning” bot showing the

whats_next action.

After the list of tasks has been presented and the bot is listening, the user

has to pick one task to execute. For each task in the process, there will need to

be an action to determine what will happen after the task’s execution. Remember

that, in the “Trip Planning” process, there are a few tasks that require information,

such as “Book flight”, and others that do not, such as “Book tour”. The creation

of both of these types of task actions will be covered in what follows.

5.3.6 Creating task actions in the actions.py file

Let us start with the “Book flight” task because it is the first one in the “Trip

Planning” process. This is a task that requires information, so it will originate two

custom actions: one task action (Fig. 5.18), which will be covered in this step, and

also a form action, for gathering the information and completing the task itself (Fig.

5.20). The latter will be covered in Section 5.3.7.

As shown in Fig. 5.18.1, the name of this first task action will be book_flight.

The action’s name must be the same as the intent’s name, and all of them equal

to the task definition key that was defined in Camunda in Fig. 5.4b. The task key

also needs to be added as a local variable called taskKey inside the run method, as

50

shown in Fig. 5.18.2, because it will be used for checking if the task is present in

the available tasks object.

To make this check, first, the bot needs to make a GET request to retrieve all

of the available tasks (Fig. 5.18.3) and initialize an availableTask variable as None

(Fig. 5.18.4). The bot will then go over each available task in the retrieved object,

and if one of them is the sought task, the bot will store it in the availableTask

variable (Fig. 5.18.5). Otherwise, the availableTask variable will remain as None

and that will mean the requested task is not available, and the bot should let the

user know (Fig. 5.18.6). Finally, if the task was, in fact, available, the bot will store

its ID in the global variable currentTaskId, which will later be used for completing

the task (Fig. 5.14). Before this “Book flight” task can be completed, though, the

bot needs to gather some information. In this case, it needs to ask the user what

their flight date is. To do that, this book_flight action should be followed by a

form action, which can be called ask_flight_date (Fig. 5.18.7).

Figure 5.18: Fragment of the actions.py file from the “Trip Planning” bot showing the

book_flight action.

If this task did not require any information, the task action would have to

call the completeCurrentTask function (Fig. 5.14) before the method’s “return”

statement. When calling this function, it would have to pass an empty object as

argument since no variables need to be updated. Also, the method would return

51

an empty array, which would mean that the bot could follow the regular story path

instead of being redirected to another action. This case is exemplified by the “Book

transfer” action, shown in Fig. 5.19, which does not require any information.

Figure 5.19: Fragment of the actions.py file from the “Trip Planning” bot showing the “Book

transfer” action.

5.3.7 Creating form actions in the actions.py file

As previously explained, since the “Book flight” action requires information,

at the end of the book_flight task action, the story path needs to be redirected to

its respective form action. Since the ask_flight_date action (Fig. 5.20) will be a

form action, its class needs to inherit from the FormAction class (Fig. 5.20.1). Every

form action also needs three methods, besides “name”. They are: requred_slots

(Fig. 5.20.2), slot_mappings (Fig. 5.20.3) and submit (Fig. 5.20.4, Fig. 5.20.5

and Fig. 5.20.6).

The required_slots method (Fig. 5.20.2) is a static method and should

return an array with all of the variables required by this task. This specific “Book

flight” task only requires one variable, as shown in Fig. 5.7a, and that is flightDate.

Thus, the flightDate slot should be added to the required_slots method.

Each slot also needs to be added to the domain.yml file in the slots section.

52

Figure 5.20: Fragment of the actions.py file from the “Trip Planning” bot showing the

ask_flight_date action.

As seen in Fig. 5.21, you should add the flightDate slot under slots, setting its

type to unfeaturized, which means that its value should not a↵ect the dialogue

flow (it is an independent variable that does not influence the conversation). You

should also set auto_fill to false because these slots should not be automatically

mapped from entities – they are going to be filled by form actions.

Figure 5.21: Fragment of the domain.yml file from the “Trip Planning” bot showing the slot

section.

Rasa has a brilliant way of knowing how to ask the user for these slots and

fill them with what it receives. In the domain.yml file, you need to add two more

elements for each variable and one more for each form. Fig. 5.22 shows the necessary

information for each variable and each form. Initially, all of the forms have to be

listed under forms (5.22.3). So far, there is only the ask_flight_date form. Then,

for each required slot, Rasa needs the developer to configure a simple “utter action”

53

that will utter the question asking the user for that particular variable. The name of

this “utter action” has to follow the pattern utter_ask_{variable}, and it should

be listed under actions (5.222), while the message that represents it should be

under responses (5.221). In this case, since the variable is called flightDate, the

action will be named utter_ask_flightDate and the bot’s response for this action

should be “What is your flight date?” For consistency with the BPMN model, this

question should be the one set in this variable’s “Label” field in the Camunda form

for this task (Fig. 5.7a).

Figure 5.22: Fragment of the domain.yml file from the “Trip Planning” bot showing the necessary

information for a form.

Then, going back to Fig. 5.20, for each slot, you need to describe in the

slot_mappings method (Fig. 5.20.3) how the bot should map the response. That

is, if it is a string, should it be converted to a number? If it is a “yes” or “no”

response, should it be converted to boolean? In this case, since a flight date can be

anything, the bot should store it as regular text without trying to map it to any

intent (that is why intent=None).

Finally, there is the submit method, where the variables will be sent to Ca-

munda and the task will be completed. Fig. 5.20.4 shows the POST payload, which

should contain each variable’s value. The tracker.get_slot("flightDate") com-

mand is used to get the value of the flightDate slot in Rasa.

In Fig. 5.20.5, the completeCurrentTask auxiliary function (Fig. 5.14) is

called, and it will e↵ectively send the POST request to complete the current task.

Since the ask_flight_date action needs to change the value of a process variable,

the completeCurrentTask function will send the updated variable value in the

POST payload.

Finally, in Fig. 5.20.6, the ask_flight_date action is finished by calling the

whats_next action, which will send to the user the next available tasks.

This concludes the creation of the “Book flight” form action, which was

54

necessary because the “Book flight” task requires information. The next task, “Book

hotel”, is also one that requires information. This guide will not go deeply into its

code since it is quite analogous to the “Book flight”. The only di↵erence between

“Book hotel” and “Book flight” is that in “Book flight”, the requested information

is not used in the process itself, while the one requested in “Book hotel” is.

“Book hotel” asks for a variable called userWantsToBookATransfer. As

previously explained, the “Book transfer” task is optional. That is represented in

Fig. 5.1 by an exclusive gateway being used to either go to this task or go around

it. The choice of path at this point is decided by a sequence flow condition, which

will evaluate whether the Camunda process variable userWantsToBookATransfer,

requested at the end of the “Book hotel” task, is true (Fig. 5.23) or false (Fig.

5.24).

Figure 5.23: Gateway sequence flow in Camunda when the userWantsToBookATransfer variable

is true.

Figure 5.24: Gateway sequence flow in Camunda when the userWantsToBookATransfer variable

is false.

After “Book hotel”, there are two more tasks: “Book transfer” and “Book

tour”. These tasks do not require any information, and thus, do not have to be

followed by any form action. As exemplified by the “Book transfer” task in Fig.

5.19, actions that do not require information only return an empty array, which

means the bot can follow the regular story path.

55

5.3.8 Configuring process-specific stories in the stories.md

file

As previously explained, “stories” are mainly used as a reference by the bot

to how conversations should go, for example, which actions come after which intents.

Unlike the manual integration described in Section 4.1, for this guide, stories will

not be responsible for following the process’s sequence flows, as Camunda will be

the one responsible for tracking the process. Therefore, the PACA will use stories

only to make sure that each action follows its corresponding intent. The actions will

then call Camunda API, which will, in turn, monitor the process. Hence, as shown

in the finished “stories” file in Fig. 5.25, every intent is followed by an action with

the same name, and then comes the whats_next action, to inform the user what

the next available tasks are. These are the bot’s regular story paths, and they will

be followed when there is no follow-up action set up, such as in Fig. 5.19.

Another example of when the bot follows the conventional story path is in

the “Book flight” action shown in Fig. 5.18. In Fig. 5.18.7, if the task is available,

the ask_flight_date action is called, as previously shown. However, that return is

conditional. If the task is not available, the execution will stop at Fig. 5.18.6, and

the method will return nothing. An empty return statement, just like the return of

an empty array, means that the bot can follow the regular story path, calling the

whats_next action.

5.3.9 Configuring the domain.yml file

Finally, after the “stories” file is finished, the domain.yml file must be com-

pleted. You first need to add the names of all of your recently written actions to

the “actions” section. Then, you should check if every form action has its name

listed under “forms” and, for every slot requested in a form, if there is a configured

response. It is also good to check if all of the intents present in the nlu.md file and

used in the stories.md file are also listed here under “intents”.

The complete domain.yml file is shown in Fig. 5.26, including all of the

intents, slots, responses, actions, and forms that have been previously covered.

56

Figure 5.25: The complete stories.md file from the “Trip Planning” bot.

57

Figure 5.26: The complete domain.yml file from the “Trip Planning” bot.

58

5.3.10 Configuring the config.yml file

There is also one more file that is useful to check, which is config.yml, shown

in Fig. 5.27. This file provides the basic configuration for the bot, both for the NLU

and Core components. For the NLU, you should set the language and the NLU

pipeline, which contains all of the steps that the NLU will execute to try to unders-

tand user input. Here, we are using a pipeline template (supervised_embeddings),

which is a predefined set of pipeline components. However, you can choose your own

components, and the NLU accuracy will vary according to the components used. To

learn more about all of the available NLU pipeline components, you can visit the

Pipeline section4 of Rasa docs.

Then, for the Core component, you have to choose which policies are going to

be used. The policy set is what Rasa uses to combine all of the available information,

such as stories, actions, and the last identified intent, to decide what the bot should

do next. The most crucial policies to be listed here are FormPolicy, which is

necessary in this case because the “Trip Planning” scenario requires Forms, and also

FallbackPolicy, which will make sure that the utter_default_fallback action,

included in the domain.yml file, is executed when the bot does not understand user

input. The other policies listed in this file (MemoizationPolicy, KerasPolicy and

MappingPolicy) are used to generate the probabilities for each possible action after

an intent, and then choose which action to take. All of the available policies, and

also the arguments for the FallbackPolicy that were used in Fig. 5.27, are further

explained in the Policies section5 of Rasa documentation. It is wise to check it out

and experiment with di↵erent policies and arguments if there is enough time. That

is because di↵erent policy combinations might generate a more stable or unstable

bot, and the only way to figure out which combination is the best is by trial and

error.

4https://legacy-docs-v1.rasa.com/nlu/choosing-a-pipeline/

5https://legacy-docs-v1.rasa.com/core/policies/

59

https://legacy-docs-v1.rasa.com/nlu/choosing-a-pipeline/
https://legacy-docs-v1.rasa.com/core/policies/

Figure 5.27: The config.yml file from the “Trip Planning” bot.

5.4 Running Camunda and the Bot

After you have finished preparing the BPMN and all Rasa files, you can

finally execute the Process-Aware Bot. For that, you need to make sure you have

installed Camunda Modeler (in this guide, version 3.4.0 was used), Rasa 1.8.2, and

Rasa SDK 1.8.0.

5.4.1 Launching Camunda Engine

The first step is starting Camunda Engine. On Camunda’s website, there are

step-by-step instructions on how to run Camunda using Docker6 or from scratch7.

After it is up and running, you need to check http://localhost:8080/, to see if the

Camunda web page is showing. If it asks for a login, the default user and password

combination is demo/demo. If you go to Cockpit and have never used Camunda in

your current machine, you should probably see no running process instances, and

below Process Definitions, there should be a total of zero.

Now, you need to go to Camunda Modeler, and, after loading the BPMN

file, click on the last icon in the toolbar, the “Deploy current diagram” icon. In the

dialog that opens up, the REST endpoint should be pointing to http://localhost:

8080/engine-rest, and Authentication should be set to None. The name of

the deployed diagram can be whichever is preferred. Finally, click on the Deploy

6https://docs.camunda.org/manual/7.14/installation/docker/

7https://docs.camunda.org/manual/latest/installation/camunda-bpm-run/

60

http://localhost:8080/
http://localhost:8080/engine-rest
http://localhost:8080/engine-rest
https://docs.camunda.org/manual/7.14/installation/docker/
https://docs.camunda.org/manual/latest/installation/camunda-bpm-run/

button. When you go back to Camunda Cockpit, you should now see there is 1

Process Definition, and when you click on the number, you should see your process

definition key, with 0 running instances. There are no running instances yet because

the first one will start running when the bot is asked to start the process.

5.4.2 Launching Rasa

For the Rasa part, you need to open two Terminal windows in the directory

where the bot files are located. In the first one, you should run rasa run actions,

so it will start the action server. In the other one, you should run rasa train

and then rasa shell, which will start the bot in the command shell. It is worth

noting that, instead of rasa shell, you can use the rasa x command to execute

the bot in Rasa X – Rasa’s default GUI – if this tool is configured. There is also

the rasa interactive command, which will give you a more in-depth look at why

the bot is responding a certain way if it is behaving unexpectedly.

Finally, when the bot is up and running, as soon as you type in a sentence

corresponding to the start_process intent, it will start a process instance, and you

can follow the process execution inside Camunda Cockpit.

This is the end of the PACA Generation Guide. This guide has presented

step-by-step instructions for building a Process-Aware bot. A “Trip Planning” sce-

nario has been used for materializing each step; however, the introduced steps can

be successfully extrapolated to other scenarios, as will be shown in Chapter 6. A

conversation example with the Process-Aware “Trip Planning” bot is shown in Fig.

5.28.

5.5 The conceptual connection between Business

Processes and CAs

Ultimately, the connection between the business process and CA domains is

represented in Fig. 5.29. Almost all of the concepts listed in Chapter 4 are portrayed

here. On the left, we have business process concepts, including Camunda-specific

ones, and on the right, we have Rasa concepts, some of them split into more specific

blocks.

61

Figure 5.28: A complete conversation with the “Trip Planning” bot.

62

There are four types of actions:

• start_process action

• task actions

• whats_next action

• form actions

and two types of intent that were portrayed:

• start_process intent

• task intents

The four basic intents covered in the beginning of Section 5.2 (greet, affirm,

deny and now_what) are not shown in the picture because they are not connected to

any business process concept. The same goes for the “stories” concept. They only

exist to facilitate the conversation flow.

Now, we will examine each connection portrayed in Fig. 5.29. The process’s

start event will be represented as a start_process intent and a start_process

action (Fig. 5.29.1). After that, each process task will produce a task intent and

a task action (Fig. 5.29.2). The end event and all sequence flows are represented

in the whats_next action (Fig. 5.29.3). This action, as previously explained, will

make a call to Camunda to see what the next available tasks are, and if the process

has reached the end event, it will utter a message informing the user the process

is finished. The concept of “Gateway” is not in the picture because gateways are

evaluated exclusively inside Camunda, and therefore, not connected directly to any

CA concept. Then, for each User Task Form in Camunda, there should be a form

action in Rasa (Fig. 5.29.4) to ask the user for specific information and then send

it back to Camunda. Lastly, this requested information is stored in Camunda as a

Process Variable, while in Rasa, it is stored as a slot (Fig. 5.29.5).

63

Figure 5.29: Diagram portraying the connection between Process and CA Concepts.

64

Chapter 6

Process-Aware Conversational

Agent: A Use Case

To assess the applicability of our approach, we present an example in which

the PACA Generation Guide was used to build a Process-Aware Conversational

Agent, testing the connection between business process and CA components. For

this use case, we wanted to analyze a looser scenario, i.e., a process in which tasks

are not strictly dependent on each other. Doing so, we intended to evaluate if the

connection between business process and CA concepts remained even without rigid

dependencies between tasks. From this perspective, we chose a “Wedding Planning”

process. In this example, we established five main tasks:

• picking a date

• booking a venue

• booking a band

• booking a caterer

• booking a photographer

Whenever we seek to translate a real-life set of activities into a process, there

are always many assumptions we have to make to successfully represent it using a

widespread notation. We supposed that, once the couple has decided on a specific

date, the other four tasks listed above could be executed in any particular order. For

65

example, you do not necessarily need to have previously booked a venue to book a

band, a caterer, or a photographer. These four activities are arguably independent

of each other.

After drawing a model that considered this flexibility, the resulting process

representation is displayed in Fig. 6.1. This diagram shows that the first task to

be executed is picking the date for the wedding. After that, the four main tasks

can be executed in any particular order, which is represented by the fork and join

with Parallel gateways. This fork and join also means that all four tasks must be

executed for the process flow to move on.

Then, there is a Service Task called “Finish Booking” right after the gateway

following the four booking tasks. In this specific scenario, this task is not executing

any code. It is only there to show that it would be possible to create a Java class

to e↵ectively make the booking, and it would automatically run after the four bo-

oking tasks had been completed. However, in our use case, it simply evaluates an

expression that will always return true, so this Service task will be passed through

without further implications.

Finally, the only way of adequately ending the process execution is by fi-

nishing all bookings. If the user were to exit the software mid-execution, the process

instance would not be properly terminated, continuing to run in Camunda Engine

until it was manually stopped through Camunda Cockpit or the API.

Figure 6.1: BPMN diagram for the “Wedding Planning” process.

66

First, we had to create the default Rasa bot according to step 5.2 of the guide.

Then, we moved on to process-specific intents and actions. For the process-specific

part, in accordance to step 5.3.1 of the guide, we planned the following intents,

which were then added to the nlu.md file:

• start_process, for when the user asks to start the “Wedding Planning” pro-

cess

• now_what, for when the user what is left on their list after they have completed

some tasks

• choose_date, for when the user has picked the date and is ready to inform it

to the bot

• a set of four intents for when the user wants to pick the task they want to

start: book_band, book_photographer, book_caterer and book_venue.

Then, according to step 5.3.2 of the Guide, for each intent, we needed to plan

their respective response actions, i.e., what the bot should say or do after each of

these intents is recognized. Each action would be used to make calls to the Camunda

API so that the bot could start and navigate the process.

The following actions were planned:

• start_process, which will start an instance of the deployed process.

• whats_next, which lists the currently available tasks and also informs the user

when the process is finished

• five custom actions, with the same name as their corresponding intents (choose_ c

date, book_band, book_photographer, book_caterer and book_venue), each

meant to be executed right after its respective intent.

• one form action (ask_wedding_date) that will ask the user for the wedding

date so it can be stored and possibly used later.

After the initial configuration of the actions.py file (step 5.3.3 of the guide),

each of these actions had to be added to the actions.py file. The start_process

action was created according to step 5.3.4, and the whats_next action followed

67

step 5.3.5. The five custom task actions were built by following step 5.3.6, and the

only form action for this process (ask_wedding_date) was created according to step

5.3.7.

The process will be finished once all of the four booking tasks have been

executed, and at that moment, the whats_next action will inform the user they are

done.

Finally, we finished the bot’s configuration by completing the stories.md

file (step 5.3.8), domain.yml file (step 5.3.9) and the config.yml file (step 5.3.10).

A conversation example with the “Wedding Planning” bot is shown in Fig. 6.2.

68

Figure 6.2: A complete conversation with the “Wedding Planning” bot.

69

Chapter 7

Discussion

In this chapter, we discuss some aspects of the implementation, including

di↵erences between the “Trip Planning” and “Wedding Planning” scenarios that we

have handled.

Initially, both of these scenarios were attempted to be implemented without

the integration with Camunda, using only the tools that Rasa provides. This method

of manual integration was briefly explained in Section 4.1. The “Trip Planning”

scenario was not particularly challenging to implement using this method because

of its stricter design. We found the suggestions were highly accurate, mainly because

the user was only allowed to execute one, or at most, two actions at any point in

time.

However, this method was shortly perceived as unscalable and di�cult to

replicate. When we tried to adapt the “Trip Planning” bot for the “Wedding Plan-

ning” scenario, it became clear that most of the original code would have to be

rewritten. That was because we had had to embed too much context-specific logic

in Rasa for a process to work correctly, and the “Trip Planning” scenario was already

too entrenched in it. Beyond that, the fact that the “Wedding Planning” process

had fewer dependencies between tasks incurred in increased implementation com-

plexity. Since Rasa requires the developer to write stories beforehand to portray all

possible conversation paths, it was challenging to establish without Camunda that

the four booking tasks could be executed in any order, which led to suggestions

being occasionally wrong.

By comparison, when using Camunda, both scenarios were relatively easy to

70

implement and produced good results. Following the guide, the wedding plan bot

took less than a day to implement. This time would undoubtedly increase if we were

also to create Java classes for Service tasks; however, we did not need to implement

any classes for our scenario.

We also found that Exclusive, Inclusive, and Parallel gateways worked natu-

rally well out-of-the-box. Camunda was able to determine the correct paths when

coming out of a gateway, and all of the available paths were adequately presented

to the user.In our array of tests, we found only one gateway scenario in which the

Camunda/Rasa combination did not do its best, which was when there was an Ex-

clusive gateway with more than one outgoing sequence flow evaluated as true. In

this case, Camunda shows only the first available path according to the XML order

instead of showing all of the available paths and letting the user pick the one they

want to follow. This strategy makes sense considering that, at an Exclusive gateway,

the user can only pick one flow anyway. However, if more than one path is available,

it would be nice to see all of the available paths before picking one.

Regarding natural language processing, the bot proved successful in unders-

tanding di↵erent sentences for the same intent, and even typos without needing to

configure them explicitly in the nlu.md file. For example, if a user types “tirp”

instead of “trip”, or “filght” instead of “flight”, the bot could still understand the

message. This project, however, does not yet support two di↵erent intents in the

same message, nor an intent combined with an information, so the user will not be

understood if they send “I want to book a flight and a hotel”, or “I want to book a

hotel and do not want a transfer”. This is planned to be supported in the future.

Despite not using an evaluation method in this work, a possible evaluation

approach for a related future work would be to follow the footsteps of Cranshaw et

al. [18], dividing our evaluation into four steps. The first one would be a “wizard-of-

oz” for gathering initial data to populate our NLU and story files. Then, a usability

study could be conducted to assess the solution’s viability and to improve some

aspects of it. And finally, two phases of field deployments for two di↵erent user

groups.

As a whole, from the combination of theory and examples, it has been shown

that business processes can be successfully used to generate bots. Although some

71

parts of the chatbot need to be manually programmed, such as custom actions,

even with that manual e↵ort, the chatbot development demanded less e↵ort than

it would take to generate a bot from scratch, while producing a quite satisfactory

result. It was also found that major concepts from the business process domain can

be e↵ectively translated into the CA domain.

72

Chapter 8

Conclusion

In this work, we have presented a guide that helps with the creation of

Process-Aware Conversational Agents and have discussed the challenges of asso-

ciating CAs with business processes. We believe that embedding process theory

into conversational agents with good communication skills has a great potential to

help users navigate their daily processes.

We have also realized that processes are present not only in business scena-

rios but also in most of our everyday activities. For instance, for a chef to prepare a

specific dish - the outcome -, they have to follow several activities that are represen-

ted in the recipe. This means that cooking is a process. Processes can also be more

complex, such as a scenario of treating patients, with a compound set of variables,

including the patient’s symptoms, insurance allowances, and integrated medical sys-

tems [19]. Interestingly enough, many of these processes can also be written using

BPMN, despite being located outside of the business realm, which leads us to be-

lieve that a solution such as ours, that utilizes business process concepts, could be

expanded to di↵erent areas of our lives.

Our guide has been tested with Exclusive, Inclusive, and Parallel gateways,

and both User and Service tasks. It also supports a Camunda feature called User

Task Forms, which allows the bot to ask for user input and save the responses into

variables for later use. Other BPMN features that were not mentioned in this study

might actually work, but they have not been tested in our specific scenarios.

Future work might involve, firstly, implementing more process examples as

bots and a formal evaluation of the proposal. Secondly, it would be helpful to create

73

a bot that supports multiple process definitions and automatically recognizes the

process definition that the user wants to start. Another possible future development

is the association of process mining theory and tools with the process and CA

concepts listed in this work. Finally, an interesting extension of this work would be

to implement a prototype that can write Rasa files and train its model automatically

after parsing a BPMN process.

74

References

[1] WESKE, M., Business process management : concepts, languages, architectu-

res. Berlin New York, Springer, 2012.

[2] DUMAS, M., Fundamentals of business process management. Berlin, Germany,

Springer, 2018.

[3] DANG, J., TOKLU, C., HAMPEL, K., et al., “Human workflows via document-

driven process choreography”. In: 2008 International MCETECH Conference

on e-Technologies (mcetech 2008), pp. 25–33, IEEE, 2008.

[4] DIJKMAN, R., LA ROSA, M., REIJERS, H., “Managing large collections of

business process models-current techniques and challenges”, Computers in In-

dustry, v. 63, n. 2, pp. 91–97, 2012.

[5] GNEWUCH, U., MORANA, S., MAEDCHE, A., “Towards Designing Coo-

perative and Social Conversational Agents for Customer Service.” In: ICIS,

2017.

[6] HELANDER, M. G., Handbook of human-computer interaction. Elsevier, 2014.

[7] COUGHANOWR, D. R., KOPPEL, L. B., OTHERS, Process systems analysis

and control, v. 2. McGraw-Hill New York, 1965.

[8] OMG, “Business Process Model and Notation (BPMN), Version 2.0.2”, Jan.

2014.

[9] BENTLEY, F., LUVOGT, C., SILVERMAN, M., et al., “Understanding the

long-term use of smart speaker assistants”, Proceedings of the ACM on Inte-

ractive, Mobile, Wearable and Ubiquitous Technologies, v. 2, n. 3, pp. 1–24,

2018.

75

[10] CLARK, L., PANTIDI, N., COONEY, O., et al., “What makes a good conver-

sation? challenges in designing truly conversational agents”. In: Proceedings of

the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12,

2019.

[11] LEE, C., JUNG, S., KIM, S., et al., “Example-based dialog modeling for prac-

tical multi-domain dialog system”, Speech Communication, v. 51, n. 5, pp. 466–

484, 2009.

[12] RADZIWILL, N. M., BENTON, M. C., “Evaluating Quality of Chatbots and

Intelligent Conversational Agents”, 2017.

[13] FAST, E., CHEN, B., MENDELSOHN, J., et al., “Iris: A conversational agent

for complex tasks”. In: Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems, pp. 1–12, 2018.

[14] BRADLEY, N., FRITZ, T., HOLMES, R., “Context-aware conversational de-

veloper assistants”. In: 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE), pp. 993–1003, IEEE, 2018.

[15] MINER, A., CHOW, A., ADLER, S., et al., “Conversational agents and mental

health: Theory-informed assessment of language and a↵ect”. In: Proceedings of

the fourth international conference on human agent interaction, pp. 123–130,

2016.

[16] NICHOL, A., “A New Approach to Conversational Software”, Jun 2019.

[17] TOXTLI, C., MONROY-HERNÁNDEZ, A., CRANSHAW, J., “Understanding

chatbot-mediated task management”. In: Proceedings of the 2018 CHI confe-

rence on human factors in computing systems, pp. 1–6, 2018.

[18] CRANSHAW, J., ELWANY, E., NEWMAN, T., et al., “Calendar. help: Desig-

ning a workflow-based scheduling agent with humans in the loop”. In: Proce-

edings of the 2017 CHI Conference on Human Factors in Computing Systems,

pp. 2382–2393, 2017.

[19] GORRY, G. A., “Modelling the diagnostic process”, Academic Medicine, v. 45,

n. 5, pp. 293–302, May 1970.

76

	Introduction
	Background
	Business Processes
	General Business Process Concepts
	Camunda Concepts

	Conversational Agents
	General CA Concepts
	Rasa-specific Concepts

	Related Work
	Integration Rationale
	Manual Integration
	Integration with Workflow Engine

	PACA Generation Guide
	Preparing the BPMN
	Setting general process properties
	Setting each task's type
	Configuring User tasks
	Requesting information with User tasks (optional)
	Configuring gateways
	Setting up start and end events

	Building the default Rasa bot
	Planning default intents
	Planning default actions
	Adding default intents to the yamlnlu.md file
	Adding default intents and actions to the yamldomain.yml file
	Configuring default stories in the yamlstories.md file

	Adding process-specific pieces to the Rasa bot
	Planning process-specific intents and adding them to the yamlnlu.md file
	Planning process-specific actions
	Initial configuration of the yamlactions.py file
	Creating a yamlstartprocess action in the yamlactions.py file
	Creating a yamlwhatsnext action in the yamlactions.py file
	Creating task actions in the yamlactions.py file
	Creating form actions in the yamlactions.py file
	Configuring process-specific stories in the yamlstories.md file
	Configuring the yamldomain.yml file
	Configuring the yamlconfig.yml file

	Running Camunda and the Bot
	Launching Camunda Engine
	Launching Rasa

	The conceptual connection between Business Processes and CAs

	Process-Aware Conversational Agent: A Use Case
	Discussion
	Conclusion
	Bibliografia

