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RESUMO

Este projeto tem como objetivo criar uma versao minimamente funcional de um
aplicativo para aprendizado de musica através da anélise de performances. Como
cada musico imprime em suas interpretagoes seu estilo tinico e pessoal de tocar, fre-
quentemente estudantes de musica e musicologia se véem diante do problema de ter
que comparar diferentes versoes de uma mesma obra. Devido & necessidade de mar-
car as minutagens de trechos especificos em cada gravagao de interesse, essa tarefa
normalmente é trabalhosa, e atualmente nao existe interface de livre acesso onde
seja possivel acompanhar uma partitura e diversas gravagoes de uma peca musical.
Tendo isso em vista, este trabalho desenvolve um player de audio em versao web onde
¢é possivel, simultaneamente, trocar livremente entre interpretagoes de uma mesma
obra e acompanhar o desenvolvimento de uma obra através de sua partitura. Para
isso, representacoes em chroma de cada uma das diferentes gravacoes fornecidas pelo
usuério sao usadas como entrada do algoritmo de comparacao Dynamic Time Warp-
ing (DTW), que fornece a equivaléncia entre quadros das interpretagoes. No caso
do acompanhamento de desenvolvimento, utiliza-se como referéncia de interpretacao
uma gravagao sintética, criada através do arquivo fornecido pelo usuario, cujas notas
ocorrem precisamente nos instantes indicados na partitura. O trabalho menciona
algumas heuristicas para a selecao dos parametros necessarios para os céalculos das
representacoes e da DTW, e ao final sao apresentadas as vantagens e limitagoes do

método usado, bem como capturas de tela da interface produto deste projeto.

Palavras-Chave: musica, analise de performance, representagoes chroma, DTW,

interfaces web.
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ABSTRACT

This project aims to create a minimally functional version of an application for
learning music through performance analysis. Because each musician has a unique
and personal playing style, often music and musicology students are faced with the
problem of comparing different versions of the same musical piece. This is commonly
a time consuming task that involves marking the minutes of passages of interest
in each of the recordings being studied, and currently there is no easily accessible
interface where it is possible to both follow a score and freely switch between different
interpretations of a given piece. Having this in mind, this work develops an audio
player using web technologies where it is possible to perform both of these tasks.
For this, chroma representations of each one of the recordings provided by the user
are inputted to the Dynamic Time Warping (DTW) similarity algorithm, which is
responsible for finding the inter-frame equivalences between the inputs. For score
following, a synthetic recording created using the music sheet file given by the user is
used as the reference of a mechanical interpretation where all notes happen exactly
where the score indicates. This study mentions some heuristics for choosing the right
set of parameters to use in the DTW in chroma feature extraction, and also analyses
the advantages and limitations of the proposed method. In the end, screenshots of

the resulting interface are provided.

Key-words: music, performance analysis, chroma features, DTW, web interfaces,
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ABBREVIATIONS

CSS - Cascading Style Sheets

DFT - Discrete Fourier Transform

DTFS - Discrete-Time Fourier Series

DTFT - Discrete-Time Fourier Transform

DTW - Dynamic Time Warping

FS - Fourier Series

FT - Fourier Transform

HTML - HyperText Markup Language

MIDI - Musical Instrument Digital Interface

OSMD - OpenSheetMusicDisplay

RNN - Recurrent Neural Network

STFT - Short-Time Fourier Transform
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Chapter 1

Introduction

Music, while easy to listen to, is often hard to describe. Despite being simply
a creatively ordered collection of sounds, music is able to communicate feelings and
sensations that are difficult to define. For every song that exists, each musician
has their own interpretation of how it should be played. Professional artists spend
years trying to master the best ways of expressing themselves through music, and
even today, there are heated debates as to how certain pieces should be played
in order to create particular sensations in the audience [1, 2|. The study of the
interpretative variations that make two recordings of the same song sound different
is called performance analysis [3, 4]. Tt is a subject of interest not only to professional
musicians and musicologists, who make a living out of interpreting musical pieces,
but also to amateur players and enthusiasts who enjoy music as an art.

Currently, there is no practical way to study performance differences between
artists. For every piece that one may be interested in studying, there is the laborious
task of finding the music sheets, hearing each version that is going to be compared,
noting down the minutes of the parts of interest, and then going back and forth
between recordings while trying to notice the subtleties of each musicians’ playing
style. Having this in mind, this project aims to create a minimal viable system
that allows the user to switch between different recordings with ease and also follow
music scores, in order to be able to conveniently compare versions of the same
piece. We will examine in detail the signal processing techniques that are needed to
find equivalent instants between different recordings, and also create a user friendly

interface that can be easily used for performance analysis.



1.1 Musical scores and what is not written in them

Historically, the most traditional form of representing music is through mu-
sical scores, or music sheets. Scores contain the instructions for playing a certain
piece of music, and make use of specific notation to graphically represent them in
paper. However, sheet music is nothing more than a guideline to play a song. Even
though tempo and dynamics are almost always written in the score, musicians will
often interpret pieces differently by varying them within a certain range, and also
by articulating musical sentences in distinct manners.

Furthermore, some musical notation symbols are quite vague in their mean-
ing. A fermata, for example, is defined by the Merriam-Webster dictionary as “a
prolongation at the discretion of the performer of a musical note, chord, or rest
beyond its given time value” [5]. In the score for Beethoven’s Fifth Symphony the
instructions say that the piece should be played in allegro con brio, which means

with “a brisk and lively tempo”.
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Figure 1.1: Example of musical score showing the many different symbols used in
music notation. The semicircle over the last group of notes indicates a fermata.

This goes to show that musical scores do not have all the information to
precisely determine a music performance. Different musicians will always read sheet
music distinctly according to their own views of the piece being played, and also to
their own playing styles and habits.

There are other, more recent, ways of representing a musical work. The first
and most obvious one is through audio recordings, which capture performances in a

record, compact disk, tape, or digital audio file. While recordings perfectly register



what makes a performer’s interpretation unique — tempo and dynamic variations,
style changes, and articulation —, they do not explicitly show which notes are being
played and when.

The alternative to score and audio representations are the so-called symbolic
formats [3], which stand somewhere in between the other two. Symbolic audio rep-
resentations, such as MIDI [6], explicitly show the notes being played and contain
instructions that can be converted into sound, but do not reproduce the interpre-
tative nuances of an audio recording. Similarly, symbolic score representations, e.g.
MusicXML [7], detail the notes that should be present in the score, and could be
converted to sheet music through automatic engraving techniques, but do not inform
the final layout of the music symbols on the page.

Performance analysis is challenging because, regardless of the representation
that is being used for a song, there will always be gaps that need to be filled by
looking at the piece from different perspectives. In order to understand the technique
of a performer, and compare it to others, it is necessary to hear different audio
recordings of the piece, see the parts of interest in the music sheet, and, ideally, also
be capable of having an idea of what would the piece sound like if it was played
mechanically, with no interpretative variations.

The main goal of this work is helping the people interested in performance
analysis by creating an interface that could simultaneously display these different
perspectives of a musical piece in an easy way to use. To reach this objective,
two features must absolutely be present in the final product given to the user:

interpretation switching, and score following.

1.2 Synchronization of music recordings

Interpretation switching, is the capability of changing between two or more
interpretations of the same piece during playback. This means that the user, at any
moment during playback of a musician’s recording, should be able to press a button
and resume audio reproduction from the equivalent instant in another performer’s

version of the same piece.



This feature is important in an interface for performance analysis because it
allows the user to hear an extract by a performer and immediately compare it to
the same part of the piece executed by another artist. In this way, the playing style
of the first musician is still fresh in the user’s head, and parallels between the two
interpretations can be easily made.

A little less subjectively, the definition of equivalent instant is that of a musi-
cally analogous moment in the second performer’s version. This implies finding the
temporal correspondence between times in two different versions of the same piece, a
task that is also called synchronization of music recordings. In this study, we will use
the approach detailed in [3] for finding these equivalences. It starts by transforming
audio representations of different recordings into sequences of feature frames that
numerically represent the musical content present in chunks of the performances.
These numerical representations are called chroma features, because they show the
amount of energy in each of the twelve musical “colors”, or musical notes, regard-
less of the octave!. The features are then used as input to an alignment algorithm
called dynamic time warping (DTW), which is responsible for comparing them and
providing correspondences between the chunks from the various recordings, as they
evolve over time.

This method seems to be the standard in the context of audio synchroniza-
tion, and there are several systems for interpretation switching that have successfully
implemented it [8, 9, 10, 11] or some variation [12, 13]. In [10], this framework was
validated in a survey conducted with music students that were supposed to compare
nine different recordings of the same extract of Beethoven’s Pathétique Sonata Op.
13 using a system for audio synchronization.

There are alternatives both to the chroma features [14, 15|, and to the
DTW [12, 13], but having in mind the wide adoption of this framework for syn-
chronization tasks, and the fact that this project aims more at the creation of an
accessible interface than at the investigation of novel audio alignment techniques, a

decision was made to adopt the method without further questioning.

LAn octave is the interval between a musical note and the next note of the same name. For
example, the interval between E3 and E4 is an octave.



1.3 Score following

Score following is the task of automatically marking down in a music sheet the
current position of a song during playback time. As of today, there are many software
solutions for editing music sheets [16, 17, 18] that are capable of synthesizing music
based on a symbolic representation, and follow a score along its playback. However,
following the audio representation of a human performance is a less straightforward
task.

Being able to visually identify the notes being played in a digitally rendered
score helps the user to locate him or herself in the music sheet, and also creates the
possibility of visually identifying the differences between performances. Moreover,
it opens up the possibility of having an interactive score, where the user might be
able to navigate by clicking on notes or measures, which would make the interface
even easier to use.

Currently, there are solutions for following scores in live performances [19],
and even accompanying sheet music for single instruments with digital record-
ings [20]. Also, the author of [3] was involved in the creation of a web interface
for choir rehearsals [21] that is able to follow the score of the different tracks of
a choir recording; and recently, the authors of [14| suggested trying to automati-
cally transcribe audio recordings in order to compare them to the music sheet for
following.

Yet, there seems to be no readily available interface where it is possible
to both follow a score and switch between different interpretations of it. In |9,
11], the authors mention a framework for multi-modal music listening that includes
interpretation switching, but the link to the demonstration redirects to a web page
that does not exist. Their method consisted in using optical music recognition 3|
as a first step towards obtaining a representation for the score in the same domain
of audio recordings, and then using the DTW to synchronize the performances to
the music sheet.

Here, to maintain the alignment techniques shown in [3|, we will adapt this
idea and try to align the different recordings available of a given piece with a syn-
thesized version of it. This artificial performance is extracted from a score provided

in MusicXML format, and represents a version of the piece without any interpre-



tative traits. From the synthetic recording, the same chroma features used in the
interpretation switcher can be extracted, and once again the DTW can be used to

find the optimal time equivalences between chunks of the performances.

1.4 Goals

The main goal of this project is creating a viable interface for learning music
and analyzing different performances of the same recording. To reach this objective,

the interface must meet the following criteria:

e being able to play and switch between different interpretations of the same

piece;

e allowing the user to accompany playback on the music sheet using the score

follower;
e being user friendly and easy to use and navigate.

Meeting these intermediate objectives will make sure that this first version of
the interface is usable, and will be a first step in the direction of making it available

to the general public online.

1.5 Development tools

In order to create the different building blocks of the interface, a number of
tools are used to implement the required features. Most of the project is coded using
Python [22], a flexible, interpreted language that is used for many purposes ranging
from web development to scientific computing.

Because Python is a popular, all-purpose programming language, there are
many readily available packages that implement some of the algorithms that will be
seen here. In particular, the librosa [23] library contains implementations for most of
the feature calculation and alignment procedures that will be detailed in Chapter 2,
including the extraction of chroma features and an implementation of the DTW.

Python is also very useful to parse the MusicXML files that are the input for

the score follower. The parsers in the music21 package are able to translate these files



into MIDI format, and other Python libraries such as midi2audio can communicate
with synthesizers responsible for transforming them into audio. For this last step a
synthesizer is obviously required, and FluidSynth was chosen for being open-source
and communicating with midi2audio.

As we will see in Chapter 4, in the end it was not possible to create the
user interface using solely Python. Engraving digital sheet music is, by itself, a
big challenge, and so web technologies are used to render the MusicXML files and
create the interface. Even though the pages are created and styled using HTML
and CSS, rendering the sheets and controlling playback is done using Javascript,
thanks to the language’s natural support for event oriented development, and to
OpenSheetMusicDisplay, an excellent library for score engraving using MusicXML
input.

The integration between the Python code for audio processing and this web
based front end happens using the Flask framework, a Python package for web
development. With it, it is possible to serve the user interface with the calculations

performed by the Python audio processing libraries mentioned above.

1.6 Organization of this project

The following chapters describe the theoretical foundations required for un-
derstanding the project, the algorithms, libraries and techniques that are used, and
also present a number of experiments that detail the advantages and inconveniences
of using the framework that we briefly saw in this introduction.

Chapter 2 is dedicated to the theoretical basis needed to understand how
to digitally process audio recordings, extract meaningful features, and compare dif-
ferent audio representations. It covers everything ranging from the mathematical
representation of audio signals, to the different variants of dynamic time warping,
passing through important details and trade-offs of time-frequency representations.
This chapter is complemented by Appendix A; the reader who finds that the con-
cepts present in Chapter 2 are not detailed enough is strongly encouraged to take a

look at this appendix.



In Chapter 3 the subject of interest is the interpretation switcher and its
performance aligning different types of recordings. It starts explaining how the
switching feature is implemented in general terms, introduces the librosa package
with all of its important features, and closes with a series of experiments that present:
the dataset that was mainly used to test the system, some heuristics for choosing
the best set of parameters when aligning audio recordings, and the challenges of the
typical use case of the interpretation switcher.

Chapter 4 describes the implementation of the score follower and the oper-
ation of the library that is used to render the score on the screen, OpenSheetMu-
sicDisplay. A significant part of it is dedicated to explaining how the onset times of
the musical notes in the synthetic version can be calculated, and how this is used
for score following. This chapter is fundamental for understanding why an event
oriented programming language such as Javascript makes the task of creating an in-
teractive score much easier, and also includes many examples which help understand
the limitations of the chosen framework.

The integration of the score follower and the interpretation switcher is de-
scribed in Chapter 5, where a short explanation on the basic architecture used in
modern web applications is presented. This chapter contains screenshots of the in-
terface containing switcher and follower and showcases the main features of the final
product.

Finally, Chapter 6 concludes this project with an overview of all topics cov-
ered, including remarks about the general performance of the system, and closes the

text mentioning possible future work.



Chapter 2

Theoretical Foundations

Having introduced the subject of this study, we present in this chapter the
theoretical basis used to represent and analyze music for synchronization. We will
start with a brief introduction to signal representations in general, but with a strong
emphasis on the short-time Fourier transform and the spectrogram, since they are
the starting point for the extraction of audio features explained in Section 2.2 and
are used in the audio synchronization algorithm.

We will then proceed by explaining the advantages of using features based
on musical notes rather than frequencies, highlighting the robustness of the chro-
magram in Section 2.2.2, before finally closing with an explanation of the dynamic
time warping (DTW) algorithm, and how some of its variants can improve audio
synchronization performance to the standards required for interpretation switching

and score following.

2.1 Usual signal representations

In the field of signal processing, music, speech, and audio in general are
manipulated as signals. As defined in [24], signals are functions of one or more
variables that carry information on the nature of a physical phenomenon.

The most intuitive way of analyzing a signal is trough the evolution of the
represented phenomenon in time, but as we will show along this section, it is also
possible to examine a signal as a function of frequency or with a mixed representation

using both domains. As an example, consider a signal containing a note being played



on a piano. Through a representation in time domain, it would be possible to
identify, for instance, the moment this note was played; a description in frequency
domain would reveal the harmonic content present in the signal, from which one
could infer the note that was played; finally, a time-frequency representation would

convey both information simultaneously.

2.1.1 Signals in time

The time representation of audio signals is called a waveform, and it shows
the deviation of air pressure at a specific position in space, with respect to a reference
value [3]. In the case of a sound coming from a vibrating string, for instance, the
waveform would show how the molecules of air oscillate around a point in space
while the sound wave from the string propagates.

Prior to being available in a digital format, the sound of the string in our
previous example would be transformed into an electrical signal via a microphone,
which is a transducer that converts variations in pressure into variations in electrical
voltage, then sampled and quantized! using an analog-to-digital converter. In this
last step, the signals go from being analog and time-continuous — and thus being
able to assume any value at any given time — to being digital and time-discrete —
meaning they only assume a finite set of values at samples spaced in time —, and
so become computer readable.

In traditional uniform sampling, signals are converted from continuous to
discrete by measuring the signal values at times equally spaced by a sampling period
T;; ideally, sampled signals can be perfectly reconstructed, as long as their sampling
frequency Fy = 1/7T; is greater than twice the highest frequency present in the signal.
More details on the sampling process can be found in [24, 3, 26], and in Appendix A.

The interested reader that decides to record the single piano note of the
example in an audio editing software like Goldwave [27] or Audacity [28] might get

something similar to what is shown in Figure 2.1. In the image, it is possible to see

IQuantization is beyond the scope of this study, however, it is enough to know that it maps an
interval of continuous values into a set of discrete binary numbers. Here, unless stated otherwise,
audio are quantized using 16-bit signed PCM, which has a maximum absolute value of 32768 after
conversion to decimal. More on quantization can be seen in [25].
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the evolution of the sound along time, but it is not possible to determine which note

was played.

Waveform of piano note
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Figure 2.1: Recorded waveform of a single note played on the piano. For convenience,
the x axis is converted from samples to seconds, and the y axis displays the amplitude
normalized by the maximum possible value after quantization.

2.1.2 Signals in frequency

To make note identification possible, the first step is to define what makes
one note sound different from another. Besides differences in duration, loudness and
timbre?, musical notes sound different because of their pitch. Roughly defined as
“the perceptual attribute which allows the ordering of sounds on a frequency-related
scale” [29], pitch is what makes us capable of distinguishing higher from lower notes.

This becomes much clearer in the case of pure tones, or in other words, for
sounds which have a sine function as waveform. For them, frequency is a clearly
defined property of the waveform and by listening to them it is possible to match a
target sound to a frequency. One could imagine a guitar string playing the same note
as the tone of a tuning fork. Even though the waveform of the sound coming from
the guitar is not sinusoidal, we can match it to the almost pure tone of the tuning
fork because they have the same pitch. This allows us to relate our perception of

musical notes to the frequency of their waveforms.

2These are all auditory characteristics of a musical tone. Their definitions are beyond the scope
of this study, but can be found in [29].
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With all that in mind, it is suitable to think of a signal representation that
can provide frequency information so that different notes can be clearly represented.
The mathematical tool that allows us to go from time to frequency domain is called
the Fourier transform, and it enables this transition because it performs the decom-
position of a signal into sinusoids of different frequencies.

To understand the advantage of this, consider a pitched sound coming from an
instrument. Depending on the type and construction of the instrument, there exist
certain oscillations corresponding to frequencies different from the one belonging to
the played pitch, which makes the resulting waveform a sum of many pure tone
sinusoids. For example, when someone plays the lower E string on a guitar, the
resulting tone actually has the pure sinusoid frequencies corresponding to pitches
E; (the written note pitch), E3, Bs, and to other multiples of the lowest frequency,
which is also called the fundamental frequency (fy) of the note.

Mathematically speaking, the way the Fourier transform enables this de-
composition is through rewriting our previously time-based function as a sum of
sinusoidal functions of different frequencies. Similarly to the case when a vector in
IR? is rewritten in another basis, the transformation from time to frequency can be
seen as writing the original time function in another function space basis. For digital
signals, in this case implying functions both discrete and finite, it is convenient to
work with the discrete Fourier transform (DFT), a version of the Fourier transform
that is discrete in both domains, meaning that it works with functions consisting of

samples and decomposes them into equally spaced frequencies:

X[k] = Z_ z[n]e I Tk, (2.1)
1 N-—1 -
x[n] = N X[k]e? N Pn, (2.2)

Equations (2.1) and (2.2) respectively define the operation to go from time
to frequency, and from frequency to time, and the attentive reader will note their
similarity to the basis change equations of traditional linear algebra [26, 30]. In

them, z[n| is a sample from our discrete time signal x, N is the total number of
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kn yepresent the sinusoidal basis

samples in z, and the complex exponentials e’ ¥
function mentioned earlier.

The resulting discrete function X also has size N, and each one of its k
indices is called a frequency bin. It is very important to observe that each asso-
ciated frequency %”k is given in radians per sample and not hertz or radians per
second as pitch frequencies are usually measured. This is a consequence of sampling

continuous-time signals, and in order to go back from a discrete frequency bin to a

continuous frequency, one should use the formula

f = (2.3)

where £ and N are the same as before, f is the desired continuous frequency, and
F; is the sampling rate used in the analog-to-digital conversion.

The sampling rate, or sampling frequency, is the number of samples of the
original signal obtained in one second. Therefore, since our discrete frequency Qﬁk‘
is given in radians per sample, to make the conversion we can simply multiply by
F; to obtain the value in radians per second, and after that divide by 27 to get a
frequency in hertz. We invite the reader to check Appendix A and the sections on
sampling in |24, 3, 26] for a more rigorous derivation of this formula.

Applying the DFT to the audio signal example of the previous section yields
the results seen in Figure 2.2. In it we can clearly see the frequency peak correspond-
ing to the note played before (a Cs at 523Hz); however, information concerning the
onset of the note is completely lost. In order to represent at the same time the
information in both domains, we need a new tool capable of assigning a notion of

time to the Fourier transform, as will be seen in Section 2.1.3.

2.1.3 The Short-Time Fourier Transform

Created in 1946 by Dennis Gabor, the short-time Fourier transform is a com-
promise between time and frequency representations [3]. It consists in dividing the
original signal in chunks called frames and applying the Fourier transform separately
to each one of them. In this way, the frequency content of each frame can be analysed

independently, and both time and frequency information are easily displayed.
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Fourier Transform of piano note
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Figure 2.2: Fourier transform of the piano note of the previous example. It can be
identified as a Cy due to its main peak at 523Hz, but other peaks corresponding to
higher harmonics are also visible. For better visualization, the = axis is converted
from bins to hertz and the y axis is scaled and normalized to show values coherent
with the previous waveplot.

The visual representation of the STFT is called a spectrogram, and the one
corresponding to the example used in the last two sections can be seen in Figure 2.3.
With this image, we are finally able to identify with a single representation both the

note’s pitch and its onset, i.e. the time instant in which it starts.

STFT of piano note with 2048 samples frame size
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Figure 2.3: Short-time Fourier transform of single note played in a piano. This mixed
representation allows to identify both the note frequency and onset. In this and in
all other spectrograms unless stated otherwise, the y and x axes were transformed
from bins and frames to respectively frequencies and time, and the color scale is
displayed in decibels with the maximum possible frequency magnitude value after
quantization used as reference.
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However, displaying signals in a mixed domain representation such as the
STFT comes with a few drawbacks. For the short-time Fourier transform, the most
notable inconvenience is the time-frequency trade-off in terms of resolution.

In order to get to the STFT, all chunks of samples need to go through the
DFT so that frequency content can be extracted, which causes temporal information
inside a frame to be lost. If a sound wave contains two notes in a 1 second interval,
but the frames used to build the spectrogram have a size equivalent to 2 seconds,
then it is likely that the image will not clearly show the start of both notes separately.

Yet, by reducing the frames we are forced to perform the DFT on smaller
signals, spreading frequency content across bins. One of the properties of the Fourier
representation of signals is that short signals in time are wide in frequency, and vice-
versa [24, 31]. As a consequence, whenever the STFT time frames are reduced, their

frequency content becomes wider, thus occupying many bins.

STFT of piano note with 1024 samples frame size
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Figure 2.4: Spectrograms with different frame sizes for the same audio as before.
(a) STFT with smaller windowing, increasing time resolution and frequency leakage.
(b) STFT with larger frames, reducing frequency spreading but also time resolution.
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This phenomenon can be seen on Figure 2.4, where we display the spectro-
grams for the same audio as before, but increasing (Figure 2.4b) and decreasing
(Figure 2.4a) the frame size. Figure 2.4a has visibly better time resolution when
compared to Figure 2.3, but frequency content is blurred across bins where it was
not before. Conversely, Figure 2.4b is less blurry in frequency when compared to
Figure 2.3, at the expense of having worse resolution in time.

The process of extracting the parts of the signal belonging to each time
frame is called windowing, and it also causes distortions regardless of the time
frame (window) duration. As shown in Figure 2.5, extracting the samples of a
window can also be interpreted as multiplying the original signal by a rectangular
function consisting of ones inside and zeros outside the time frame, which can add
frequency content into the original signal’s frequency spectrum. As a matter of fact,
rectangular windows like the one described before are very rich in high frequency
content due to the presence of the abrupt change between 0 and 1 and vice-versa,

and so are also responsible for blurring the frequency content of the STFT.
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Figure 2.5: Windowing process for STFT construction. (a) Signal. (b) Window. (c)
Windowed signal.

0.0

A common solution for this problem is changing the shape of the window
— or in other words, weighting differently each sample within the time frame — so
that these high frequencies have a smaller effect on the STFT. No window is capable
of avoiding frequency distortion in the spectrogram, but smoother windows exhibit
reduced leakage, at the cost of worsening frequency resolution. A few examples of
window are shown in Figure 2.6.

In order to compensate for the fact that the samples are reduced in mag-

nitude by their weighting, it is commonplace to overlap time frames so that the
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Figure 2.6: A few examples of window types, all sized 50 samples. (a) Hann. (b)
Hamming. (c) Blackman.

magnitude in all samples is restored. Overlapping also has the effect of allowing
certain frequencies to appear in many time frames, which can partially prevent the
loss of time information caused by large window sizes.

The STFT is the basic Fourier representation that is used to extract the
information necessary for aligning different audio recordings, and parameters such
as window and overlap sizes will be very important later on in Chapter 3 when we
start discussing the alignment results. In the next section, we will explain how to
go from frequency bins to notes along time, and lay the foundations on which we

will build the audio alignment algorithms.

2.2  Audio features

While the short-time Fourier transform enables accessing music information
simultaneously in time and frequency, it is very crude in the sense that, if used alone
without further processing, it hardly allows the algorithmic use of music data.

Spectrograms contain information about all frequency content in a recording,
including noise, instrument timbre, and tuning imperfections, all of which can make
the alignment of recordings less robust if used directly as input to our algorithm.
This is why it is important to extract features representative of the information we
want to analyze, which in our case are the notes being played at each instant of
time.

With the STFT as starting point, in this section we will show how to get

pitch and note data to create a robust representation of music playing along time.
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Assuming two different recordings of the same piece of music are available, our
target here is demonstrating how they can be described in such a way that makes
them comparable by an appropriate algorithm, despite the excess information in the

spectrogram.

2.2.1 Log-frequency spectrogram

When computing the short-time Fourier transform as seen in Section 2.1.3,
the result is always a matrix. Since we get K bins when applying the DF'T to each
one of the M time frames, it follows that the spectrogram x of a discrete signal x
must be a matrix where each value x(m, k) corresponds to the frequency content of
bin £ during frame m.

Formally, remembering that windowing is multiplying a signal by a window

function, and also using Equation (2.1), we can write x as [3]

=

x(m, k) = zn + mH]w[n]e‘szﬂk”7 (2.4)

n

I
o

where H, also called hop length, is the number of samples between subsequent frame

starts, and is associated to the overlap by the relation

H=|(1-0)L], (2.5)

with L equal to the number of samples in the window and O the percentage of
overlap between windows.

In order to get rid of timbre and noise differences between representations of
different recordings, the first thing to do is adapt the spectrogram to show pitches
instead of bins. As we will show, even though each bin is associated to a continuous
frequency, depending on the total number of bins, more than one of those frequencies
may be associated to the same pitch, causing these small spectrogram differences.

Frequencies are related to bins through Equation (2.3), but finding the re-
lation between pitches and frequency can be a bit more tricky. As we stated in
Section 2.1.2, pitch is the perceptual attribute of sound that allows us to match it

to a pure tone of determined frequency, but once again, unfortunately computers
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are not able to do this matching by themselves. To solve this issue, the MIDI [6]
standard was created as a way to associate note pitches and integers.

Since the second half of the XVIII*" century, the most commonly used scale
in Western music is the so-called equal tempered scale, in which notes are arranged
in a geometrical series, with an octave being equivalent to doubling the frequency
of a note. Counting sharps (or flats), an octave interval spans twelve notes, and

therefore any two pitch frequencies can be related through

fo=2112 1, (2.6)

where fy and f; are the two pitch frequencies, and where s is the number of notes
between them, also called the number of semitones in the interval.

Based on this, the MIDI standard serves as a linear scale connecting frequen-
cies and pitches. Each note pitch is represented with a 7-bit unsigned integer —
which means an integer belonging to [0,127] —, and central A, is attributed to
number 69. Considering that A4 is the concert pitch with an established frequency
equal to 440Hz, by using Equation (2.6) we can get the frequency corresponding to
a pitch assigned to a specific MIDI number by using

Foien(p) = 440 x 2727, (2.7)

Using that, it is possible to group frequencies corresponding to the same
central pitch to partially remove undesired information from the spectrogram. By

defining for each pitch p a set P of bins associated to p as

kF,
— < Fiten(p +0.5)}, (2.8)

P(p) = {k : Fhiten(p — 0.5) < N

we can assign each spectrogram coefficient x(m, k) to the pitch whose center fre-

quency is closest to it by summing the squared magnitudes® of the bins associated

3The square magnitude of a spectrogram element can be seen as the energy contained in bin %
at frame m.
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to the same p, obtaining:

Yim,p)= Y Ix(m, k) (2.9)
keP(p)

The resulting spectrogram ) is called a log-frequency spectrogram |[3], be-
cause it represents frequencies grouped in pitches geometrically spaced, which means
that the frequency axis is converted from a linear to a logarithmic scale during the
pooling process.

Pooling is exemplified in Figure 2.7 for MIDI numbers p = 68 and p = 69,
considering a spectrogram computed from DFTs with size N = 4096 for a signal
sampled at Fy = 44100Hz. The curly brackets span the bins being mapped to the

same pitch frequency, and it is interesting to see how the interval for k decreases

with the MIDI number.

Fn(43) = 4630 J Fpmh(ﬁg.a) o
Fyn(42) = 4522
Fyia(d1) = 414 /\
Fyn(40) = 4307
Fiiten(68.5) = 4275
Fiin(39) = 4199
Fbin(38) =409.1
Fitn(675) = 403.5
Fn(37) = 396.4 ] pit h( J) 0

Figure 2.7: Pooling process for MIDI pitches p = 69 and p = 68, in a spectrogram
created using DFTs with 4096 samples from a signal sampled at Fy = 44100Hz. Fiy,
corresponds to the continuous frequency associated with each bin and is given by
Equation (2.3), whereas Fpn is calculated using Equation (2.7). It is possible to
see that bins with frequency between Fiiten(p — 0.5) and Fpiten(p + 0.5) are grouped
together. Created based on [3].

Since pitches are geometrically spaced in frequency, the lower we go on the
MIDI scale, the closer the pitch frequencies become. It follows that the interval for
acceptable k becomes smaller for lower p, which leads to sets with less elements.

Moreover, time-frequency resolution trade-off plays a large role in the pooling

process due to the fact that very small windows can cause the frequency content
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to spread beyond the interval between two pitches for low p. A more detailed
discussion on the resolution issues related to the spectrogram and the log-frequency
spectrogram can be found in [3].

Figure 2.8 shows both the spectrogram (Figure 2.8a) and the log-frequency
spectrogram (Figure 2.8b) corresponding to a chromatic scale played from E; to Gy
on an electric piano. The first noticeable difference between the two representations
is the frequency scale, with the exponentially separated notes of the chromatic scale
appearing linearly distanced in the second image, but it is also possible to observe
the resolution issues of pooling in the second image, where lower pitches exhibit

thicker lines.
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Figure 2.8: Comparison between spectrogram and log-frequency spectrogram. (a)
Traditional spectrogram. (b) Log-frequency spectrogram created from the previous
one through the pooling process described by Figure 2.7. For lower piano notes, the
overtones normally contain most of the energy, which explains why fundamentals
are not visible until the second octave.
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2.2.2 Chroma features

The pitch based representation of the log-frequency spectrogram is able to
reduce the unnecessary information in the STFT up to a certain point. Since bins
are grouped by MIDI number, information is synthesized in pitches, and noise and
timbre influences on the result are reduced. Still, some lack of robustness to these
factors persists, as well explained in [3].

As seen in Section 2.1.2, notes played by instruments are generally composed
of a fundamental tone associated with some harmonics, which are nothing more
than multiples of the fundamental frequency. Since timbre is determined by the
relative magnitudes of these harmonics (characteristic of each instrument), even if
frequency information is pooled into conventional note pitches, there can still be
a noticeable difference between two recordings of the same piece played on very
different instruments.

An idea to add robustness to the representation is grouping certain harmonics
according to some criterion, so that differences in their magnitudes related to the
instrument can be smoothed out in a pooling process similar to the one used before.
Pitches can be separated in two distinct perceptual components [3]: tone height,
which determines the octave of a note, and chroma®, which distinguishes notes in
the same octave. It is natural then to conceive a pooling method that accumulates
the magnitudes of pitches that share the same note name, i.e. chroma, regardless of
their height [3]. This is why the resulting representation is also called a chromagram.

Formally, if we assign to each of the twelve musical notes an integer ¢ € [0, 11],

the chromagram can be calculated as
Clm,c)= > Y(m,p), (2.10)

with p representing a pitch MIDI number, ) being the log-frequency spectrogram

calculated earlier, and () being defined as the set of pitches sharing the same chroma:

Q(c) ={p€[0,127] : p mod 12 = ¢}. (2.11)

4The name chroma comes from the Greek word for color. This analogy relates to the fact that
humans are able to perceive equal notes on different octaves as having the same “color”, meaning
that they feel the same despite having different tone height.
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Representations based on chroma introduce a high level of robustness against
timbre because they ignore the harmonic characteristics of an instrument. Since
many harmonic pitches are grouped together, chroma representations for the same
piece will look similar independently of how the instrument resonates multiples of
the fundamental frequency.

The price, however, is irrecoverably losing tone height distinction. For ex-
ample, if someone plays in a piano a song where the right hand plays a melody
containing a C}, while the left hand accompanies with a C chord on the second

octave, both Cy and C5 will be grouped into the same chroma bin, making melody

and harmony indistinguishable.
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Figure 2.9: Chromagram of the same chromatic scale as before. Because pitches are
considered the same regardless of tone height, the representation becomes cyclical
along time.

Figure 2.9 shows the chromagram for the same chromatic scale of Figure 2.8.
In it, the magnitudes at each time frame are more concentrated than in the previous
representations, which shows how chroma features can highlight the notes being
played, at the cost of not distinguishing between octaves.

Some harmonics are still visible, especially in the lower octaves due to acousti-
cal characteristics of the piano®, but overall this representation is much more robust
By pooling bins into pitches, and pitches into chromas,

than the previous two.

noise and timbre influences are greatly reduced, which, as we will see later, can

5In the piano, the harmonics of bass notes typically have higher magnitudes than the funda-
mental frequency, making it hard to distinguish fy in this range.
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even enable the comparison of two pieces played in two kinds of instruments or in

multi-instrumental recordings.

2.2.2.1 Logarithmic compression

Up until now, all color scales used in the spectrogram and its variations in
this study were in decibels, with the maximum magnitude value after quantization
being used as the reference value. This decision was made for better visualization of
the images, considering the large dynamic range of music signals, and the fact that
logarithmic scaling reduces the distance between the highest and lowest elements of
the STF'T, thus avoiding dominance of the latter by the former.

Using log scales not only helps human visualization of representations, but
also highlights certain important elements of the spectrogram. When using time-
frequency representations as an input for alignment algorithms, just as with human
vision, it may be that some relevant, but small, elements of the representation are
obscured by those of greater magnitude.

However, without changing the reference value, the decibel scale is not flexible
with relation to the degree of compression. This is why in [3|, the author suggests
using an alternative log scaling procedure, where a compressed chromagram I, is
calculated using

I (m,c) =log(l+~C(m,c)), (2.12)

with v being a positive constant.

In this way, values are displayed on a positive scale where the ratio between
the largest and the smallest elements can be regulated by . The larger the con-
stant, the closer the smaller values are to the larger ones, that is, the stronger the
compression.

Figure 2.10 shows the advantages of using log scales for chromagram values,
and also compares the decibel scale and logarithmic compression using different
constant values. The dominance of certain elements in unscaled representations can
be very clearly seen in Figure 2.10a, where the fundamental pitch of the note Cj
hides all the other harmonics, thus underemphasizing potentially useful information.
It is possible to see that there is not much difference between decibel scaling and

logarithmic compression, but the contrast between Figure 2.10c and Figure 2.10d
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indicates the flexibility of the latter, which enables adjusting the scale according to

the data.
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Figure 2.10: Chromagram of the single note recording used as example in Section 2.1
with different types of scaling. (a) Unscaled chromagram. (b) Decibel scaled chro-
magram with same reference as before. (c) Chromagram scaled with logarithmic

compression using 7 = 1. (d) Chromagram scaled with logarithmic compression

using v = 100.

2.2.2.2 Normalization

A final additional step that can be applied to the chromagram to add robust-
ness to the representation is normalizing all frames after compression. While log
scaling can help better handling audios with a wide range of magnitude values, it is
unfortunately unable to account for changes in dynamics in music recordings.

When comparing two non normalized audio recordings of the same piece,
volume differences between the performances can create undesired dissimilarities
between their chromagrams. Dynamics can induce the opposite effect of logarithmic
compression, which is overemphasizing irrelevant information. Therefore, normal-

ization can be quite convenient depending on the recordings being compared.
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Normalization consists of making all the chromagram frames have a unit
norm by replacing each column vector m by m/ ||m/|, where ||m|| is the norm of
m. This adds robustness to interpretation dynamics when comparing two audio
recordings, because the chromagrams for both of them will include only elements
with values between zero and one. It is common in this type of processing and in
others to use the Euclidean norm, which is defined as the square root of the sum of
squares of the vector elements, but other norms such as the Manhattan norm [32, 3]
or the infinity norm [33, 3] can also be used.

Zero norm frames cannot be normalized, but a caveat suggested in [3] for
chroma representations is that columns with very small norms should not be normal-
ized either. When there is silence in an audio recording, chroma features are likely
to be randomly distributed across all twelve possible values with small magnitudes.
Hence, normalization in these cases would only emphasize irrelevant background
noise.

The solution proposed in [3] is to define a positive threshold below which all
frames are replaced by a unit norm vector with equal values for all chromas, instead
of being normalized. Mathematically speaking, if this rule is used on the compressed

chromagram of Equation (2.12), the result is

r () = Ly(m, ) /[Ty (m, o), if [Ty (m, ¢)f] > & (2.13)

— = :
L/, if |[Ty(m, o)l <e,

where I', . is the normalized and compressed chromagram, € is the threshold men-
tioned before, and ? is a vector of ones.

Figure 2.11 contains a normalized and compressed version of the chromagram
of Figure 2.9 using v = 1 and € = 1073, Visualization — especially for higher
octaves, which had smaller magnitudes — is greatly enhanced and octaves are better
defined than in the previous image. Even tough notes before C'5 are still problematic,
possibly due to the harmonic characteristics of low piano notes, whose energy is
mainly in overtones rather than in the fundamental, the image clearly shows how
normalization and logarithmic compression can highlight key aspects of an audio

recording.
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Chromagram of a chromatic scale
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Figure 2.11: Normalized and compressed chromagram for the same recording used
in Figure 2.9. In this version of the chromagram, it is possible to see how key aspects
of the audio were highlighted thanks to the procedures described before.

The normalized and compressed chromagram is the final representation that
is used as input to the alignment algorithms for the interpretation switcher. It is
superior to the raw STFT in the sense that it highlights the key information we are
interested in, which are the notes being played at each instant in time, while being
robust to changes in the aspects that are not useful for alignment, such as noise,
timbre, and dynamics.

The next section will show the fundamentals behind dynamic time warping
(DTW), the chosen algorithm for finding equivalences between the frames of two
different audio recordings. Starting from the concepts of distance and cost matrices,
we will build the understanding of this algorithm and show the performance gains

of one of its variants for our task.

2.3 Audio synchronization

Synchronization between two different music recordings is the core of the
project. As we will see in Chapters 3 and 4, it is audio synchronization that en-
ables switching between interpretations during audio reproduction, and also score
following.

To synchronize recordings, the audio features extracted from the STF'T are
used as input to an alignment algorithm, which in other words is simply a technique

for finding the equivalence between frames of two chromagrams. Being given two
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interpretations of the same song, divided in N and M frames respectively, the final
goal is finding out which of the M frames of the second is most similar to one of the

N frames of the first, according to some criterion.

2.3.1 Dynamic Time Warping

The chosen algorithm for audio synchronization, dynamic time warping, is
essentially a method for comparing matrices. Given two sequences of vectors, DTW
outputs a number that corresponds to how distant they are from each other.

Dynamic time warping works by calculating distances between column vec-
tors — in our case, the frames of the chromagram — and finding correspondences
between them using a greedy algorithm that minimizes the total accumulated dis-
tance between the two sequences. DTW outputs this total accumulated distance,
and it stands out in comparison with traditional matrix distances [34] in the sense
that it is time dependent, meaning that columns vectors are considered sequential
in time, with an influence of this progression over the output value.

For us, its most important aspect is the capability of finding equivalences
between columns of two matrices while possibly reusing some of them along the
(always forward) path. This enables us to take into account tempo difference be-
tween recordings, which is one of the features that make DTW well suited for audio

synchronization.

2.3.1.1 Distances and cost matrices

As mentioned above, DTW is based on calculating distances between the
columns of two matrices. Mathematically speaking, a distance, or metric, is a map-
ping which compares two elements of a set, and that also follows some rules, such
as being positive definite, symmetrical, and respecting the triangle inequality®.

For example, a common metric is the Euclidean distance, which is simply the
Euclidean norm of the difference between the corresponding elements of two vectors.

Another example is the metric used as standard for the audio alignment system: the

6The formal definition of distance is beyond the scope of this study, but more on that and on
other mathematical analysis subjects can be found in [33]
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cosine distance, defined as
_ (zly)
[ [[[y]l

co(x,y) = (2.14)

for two vectors x and y, with (z|y) = 7y being their inner product [3, 35, 30].

It is a well known result from linear algebra [35] that if the angle between

(z]y)

Tl So, an intuitive interpretation of

two vectors x and y is «, then cosa =
cosine distance is that vectors are very similar if they are “pointing” in the same
direction, since it is zero if they are parallel. This does not take into account the
length of the vectors, which is an advantage for audio synchronization in the sense
that it disregards dynamics, i.e., volume differences between the recordings will not
affect this similarity measure.

Considering the distance between two chromagram columns as the cost of
attributing them to each other, we can define a cost matrix C where each ele-
ment represents a measure of the distance between two frames. Formally, suppos-

ing a distance d and two chromagrams X and Y with frames (z,x9,...,2y) and

(y1,Y2, ---, Y ), we have that

C(n,m) = d(xn, Ym)- (2.15)

Cost matrix between two major scale recordings
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Figure 2.12: Cosine distance cost matrix between two C major scale recordings
starting at Cs. For convenience, time here is shown in frames instead of seconds
since the matrix compares vector frames of each recording.

Figure 2.12 shows the cost matrix of the comparison between two recordings
of a C major scale played in a piano. The first note of both recordings is C'5, and

the only notable difference between them is tempo. Since they both show the same
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note progression over time, the lowest values are more or less around the diagonal
of the image, with small vertical patches appearing when two frames of the slower

recording are musically equivalent to a single frame of the faster one.

2.3.1.2 DTW distance

The goal of DTW is using the cost matrix to determine the smallest total
accumulated distance between two chromagrams. Putting it more simply, this is
equivalent to finding the sequence of cells C(n,m) in the cost matrix which leads
to the final frame of both inputs — C(N, M), the top-right cell — and that also
minimizes the sum of the cells’ values.

Graphically, this means finding the sequence of elements in the cost matrix
with the lowest values in the color scale. In Figure 2.12, for example, this would be
the path of white cells spread around the diagonal of the image that we pointed out
before.

There is a dynamic programming’ algorithm for determining the smallest
accumulated distance between any two frames n and m. If we store the accumulated
distances between all frames in a matrix D, whose values D(n,m) represent the
minimal sum of costs needed to get from C(1,1) to C(n,m), then the accumulated

distance to any frame can be calculated using [3]

D(n,1) = iC(n, 1) for n € [1, N], (2.16)
D(1,m) = i C(1,m) for m € [1, M], (2.17)
'D(n —1,m)
D(n,m) = C(n,m)+min { D(n,m — 1) for (n,m) € [2, N] x [2, M], (2.18)
D(n—1,m—1)

\

with NV and M being the number of frames in the two sequences compared.

"Dynamic programming [36, 37] is a coding technique that consists of dividing a problem into
smaller subproblems to solve it. It differs from the standard divide-and-conquer coding strategy
because it caches intermediate results in a well suited data structure, making it more efficient.
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The proof that this algorithm does return the optimal accumulated distance
between any two frames can be found in [3], but Figure 2.13 shows an intuition as
to why it is a reasonable approach to the problem. By taking only the smallest
accumulated value in neighboring cells and adding it to the cost C(n, m), the DTW

algorithm uses recursion to work greedily towards minimizing the value D(n,m).

DTW(XY)
D(n,m-1) D(n,m)
D(n,1) D(n-1,m-1) | D(n-1,m)
D(1,m)

Figure 2.13: Dynamic time warping uses a greedy approach to achieve the minimum
accumulated distance. The smallest neighboring accumulated value to the left is
always added to C(n,m) to obtain the lowest possible cost until cell (n,m). The
final cell D(N, M) is also called the DTW distance between two matrices X, and
Y. In orange the sequence of cells with smallest accumulated cost. Based on [3].

Furthermore, choosing only cells to the left of D(n, m) to accumulate imposes
the very desirable constraint of not being able to “see the future”. When calculating
the accumulated cost to get to frames n and m, we should not be allowed to look
at the accumulated costs of reaching n + 1 and m + 1, as that would violate the
time dependency of the DTW. If this were the case, then the sequential aspect of
the DTW would be gone, because a frame considered to be further located in time
could affect previous choices.

Despite not respecting the conditions necessary for being a metric [3], the to-
tal accumulated distance between two sequences D(N, M) is often called the DTW
distance, since it is a measure of similarity between two matrices. For audio align-

ment purposes, however, it is more important to find the sequence of cells used to

reach D(NV, M) than its value.
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2.3.1.3 Warping path

The rules used to create the accumulated cost matrix D can also be used to
backtrack the sequence of cells with minimal total accumulated cost. This sequence,
which is also sometimes called the warping path, contains the equivalence between
frames mentioned in the beginning of this section.

The interpretation leading to this can be seen in Figure 2.14. Figure 2.14a
contains an illustration of a matrix D with a warping path marked on it. Because
the marked sequence shows the path with minimal total cost, it follows that, if the
frames with indexes on the path were paired, then the sum of the distances between
pairs would be minimal. From a musical standpoint, this should be the equivalent
of saying that if frames were attributed to each other as shown in Figure 2.14b,

their audible difference would be the lowest possible, since the pairs are maximally

similar.
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Figure 2.14: (a) Illustration of a warping path between two musical recordings. (b)
Musical equivalence between frames based on warping path. Figures based on [3|

Backtracking to find the warping path is incremental, and it works as ex-
plained in [3]: starting from ¢, = (N, M), add the index of the smallest available
neighbor between the ones allowed in Equation 2.18 to the beginning of a list meant
to store the warping path, and stop when the element ¢; = (1,1) is reached.

Formally, this means that for all cells ¢, of indices ¢ = L, L — 1,...,1, the

previous cell in the warping path can always be found using

qe—1 = argmin{D(n — 1,m),D(n,m —1),D(n —1,m — 1)}, (2.19)
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unless n = 1, or m = 1. In these cases we are on the first frame of one of the

chromagrams and the only way to reach ¢; = (1,1) is through:

The lowest cost cell sequence is then given by Q = (q1,4o,...,qr)-

qe—1 = (Lm - 1)7

Q-1 = (7’L - 1a 1)7

for n=1,

for m=1.

(2.20)

(2.21)

It is

important to guarantee both the start at ¢; = (1,1) and the end at q;, = (N, M),

which ensure that the path will connect the beginning and end of both chromagrams,

and also follow strictly the neighborhood restrictions stated before, thus preventing

musical equivalence with past frames.

Figure 2.15 shows the same cost matrix of Figure 2.12 with the warping

path between the two recordings drawn in red, and we can verify that the graphical

intuition for the DTW holds. The warping path follows the lowest values in the cost

matrix, which gives the more or less diagonal sequence to which we called attention

earlier.
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Figure 2.15: Warping path between the same C major scale recordings used in
Figure 2.12. It is possible to verify that the optimal equivalence between frames
goes through the diagonal path mentioned earlier.

2.3.2 DTW variants

In the literature, there are variants to the original dynamic time warping al-

gorithm that are capable of improving audio alignment performance in some cases.
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They provide a modified warping path that corresponds to the smallest accumu-
lated cost between two chromagrams considering modified constraints. In the fol-
lowing sections, the variants implemented in this study are presented, and in Chap-
ters 3 and 4, we will demonstrate why they bring significant enhancements to the

system.

2.3.2.1 DTW weighting

The first modification, and possibly the most important for this project, is

weighted DTW, a variant that slightly changes the creation of the D matrix by

using
D(n,1) =Y wyC(n,1), for ne [l N], (2.22)
=1
D(1,m) =Y w,C(1,m), for m € [l,M], (2.23)
=1

(

D(n—1,m) +w,C(n,m)

D(n,m) = min D(n,m — 1) +w,C(n,m) , (2.24)

D(n—1,m—1) 4+ wqaC(n,m)

\

instead of Equations 2.16-2.18.

Here the coefficients wy, w,, and wy are real positive numbers that act as
local weights, making the choice of each of the three directions more or less costly.
In [3], for instance, the author remarks that using wy, = 1, w, = 1, and wgq = 2 could
neutralize the classic DTW’s tendency to choose diagonal paths. The intuition is
that a diagonal move is composed of a horizontal and a vertical step, and thus should
be weighted to cost twice as much as the other directions.

In Figure 2.16, the warping path calculated using the weighted DTW propo-
sition of [3] can be seen. Here diagonal paths are multiplied by twice the weight of
horizontal and vertical steps in the accumulated cost matrix, which results in many
more horizontal and vertical patches in the optimal frame equivalence.

In Chapter 3 we will see that this is the opposite of whats is needed for
switching between interpretations. Because we are aligning two pieces that should

be, to some extent, similar, the diagonal direction represents the shortest (and most
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Weighted warping path between two major scale recordings
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Figure 2.16: Warping path between the C major scale recordings of Figure 2.12, but
this time using multiplicative weights to neutralize the diagonal tendency mentioned
in [3]. In the accumulated cost matrix, diagonal steps here have twice the cost of
horizontal and vertical steps.

natural) path to align them. Instead, changing the weights to boost the diagonals

can be a valuable tool in finding the most significant musical alignment.

2.3.2.2 Different step sizes

Another variant introduced in [3] changes the neighboring conditions of Equa-
tion 2.18. Rather than only allowing the three closest past cells to be accumulated
as seen in Figure 2.13, this version of the DTW changes the algorithm step size, that

is, it allows neighbors farther away to be considered in the minimum operation.

D(n—1,m) D(n,m)
o
L
Din—1,m~1) D(n,m - 1)
o [ L
(a)

Figure 2.17: Different step sizes proposals. Images based on 3|
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For example, if the step size condition of Figure 2.17b is chosen instead of

the standard DTW (Figure 2.17a), then Equation 2.18 becomes

/

D(n—2,m—1)
D(n,m) = C(n,m) + min ¢ D(n — 1,m — 2) (2.25)
D(n—1,m—1),

\

and if Figure 2.17c is picked, the new condition is

(

D(n —1,m)
D(n,m —1)
D(n,m) = C(n,m) +min ¢ D(n —2,m — 1) (2.26)
D(n—1,m—2)
D(n—1,m—1).

\

With the correct step size choice, this variant has the advantage of avoiding
long horizontal or vertical patches in the warping path. If this happens, it means
that many frames of one interpretation are being musically attributed to a single
frame of the other. While this is not a problem for a small number of frames,
since it can occur naturally due to differences in tempo as mentioned earlier, it is
very troublesome when the patches are long, because it will generate paths that are
optimal in the sense of cost, but that are not well fit for switching and following, as
we will see in Chapters 3 and 4.

As mentioned earlier, in the rest of this study we will further explore this
subject and see that weighting can also be used to solve this issue, with more cost
being given to horizontal and vertical neighbors, using an intuition opposite to that

proposed in [3].

2.3.2.3 Global constraints

The last variant that is implemented in this project consists in restricting

the region that can be used for calculating the warping path. This is called globally
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constraining the DTW, because it limits the equivalences to a set of columns in both
representations, regardless of neighboring conditions or weighting.

Many different global constraints exist 3], but the only one that is present
in this work is the one that is known as the Sakoe-Chiba band. It restricts the set

of possible warping paths to the ones located inside a diagonal band of fixed width.

(a) (b)

Figure 2.18: Two warping paths considering the Sakoe-Chiba band global constraint.
(a) Allowed path. (b) Prohibited path. The quantity corresponding to half of the
band width is sometimes called band radius, and it is and additional parameter to
set up when using this version of the DTW.

Figure 2.18 exemplifies the idea of globally constraining with the Sakoe-Chiba
band. The two illustrations show an allowed and a prohibited path to give the
graphical idea of restraining the area of possible warping paths.

Using global constraints like this one can improve the system performance
because the band forces paths to stay reasonably diagonal, avoiding the problem
of long horizontal or vertical patches. Furthermore, as can be seen in [3], banding
can significantly reduce the number of calculations needed to compute the DTW,
as long as the band width is much smaller than the number of frames of the longest
recording.

However, adjusting the band width can be difficult, as a constraint that
is too restrictive might exclude the desired warping path from the set of allowed
paths. Conversely, choosing too big a value for the the width would have no effect
whatsoever because the allowed path set would remain unchanged.

These variants add a layer of parameters to the DTW, which have to be

adjusted for best results just like the ones for the audio features. This process is
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hard, and can be dependent on the music recordings being aligned. For this reason,
Chapters 3 and 4 of this study are dedicated to the two main parts of the web app,
switching recordings and score following using synchronization, and to how each of

the variables used in the last sections can impact these two activities.
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Chapter 3

The Interpretation Switcher

The first of the two main blocks of the project is the interpretation switcher.
It is the part responsible for ensuring navigation between audio recordings, in a way
that feels musically seamless to the user. Supposing we have two recordings of the
same piece by different artists, the goal of the interpretation switcher is making it
possible to start playing the second one from the same point as the first one, in real
time, and without needing to pause and find the musical equivalence between the
interpretations by ear.

For this task, it is crucial to make sure that the alignment found by the
DTW is optimal not only in the sense of cost, but also musically. This requires
testing interpretation switching on many different audio recordings, and tweaking
the parameters to find the values that are best suited for each situation.

In this chapter, we will see how the interpretation switcher is implemented
in the web app, to understand exactly which parameters are available and how to
change them if needed, as well as some experiment results — shown here in the form
of DTW alignment paths drawn over cost matrices — so that a few heuristics for

choosing parameters according to the recordings can be explained.

3.1 Implementation

Originally, this work began as a scientific initiation fellowship dedicated to
trying to reproduce the results shown in [3], and most of the audio feature extraction

and alignment procedures explained in Chapter 2 were implemented in MATLAB
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code [38] to assess the viability of using the DTW as a tool for audio switching
during playback.

When the project became a term paper aiming to create a viable product us-
ing these techniques, it became very clear that a tool more flexible than MATLAB
would be needed. Python was the chosen programming language, both for its capa-
bility to produce all sorts of user interfaces — including web based ones — but also
because of the availability of an excellent package for music and audio processing:

librosa [23, 39].

3.1.1 The librosa audio processing package

Developed by researchers at LabROSA, the Laboratory for the Recognition
and Organization of Speech and Audio of the University of Columbia in New York,
librosa is a collection of useful tools for music information retrieval. It conveniently
includes functions for loading audio files, an implementation of the DTW exactly as
explained in [3], and also an alternative method for chroma feature extraction using
a filter bank [39].

In their version, the chromagram is constructed straight from the spectrogram
by multiplying it by a matrix of dimensions 12 x M, with M being the number of
STFT bins, and where the value of any given element (i, j) is positive only if bin j
corresponds to a frequency associated with chroma ¢. For example, if a DF'T of 4096
samples is used to build the spectrogram for an audio recording using Equation 2.3,
we find that bin 41 will correspond to a frequency of 441.4Hz, which has A4 as its
closest pitch. This means that in the filter bank matrix, the element (9,41)! will be
nonzero, because bin 41 is associated with an A note.

The general idea can be seen in Figure 3.1, where it is possible once again to
observe both that pitch classes are cyclical in frequency, and that pitch frequencies
are geometrically spaced from one another. An important detail is that the magni-
tude of the (7, j) values is inversely proportional to the number of bins associated

to each pitch. Lower notes span a smaller number of bins, which requires larger

!Considering matrix indices going from 0 (C) to 11 (B), which results in A being associated to
number 9.
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values to compensate for the natural accumulation caused by matrix multiplication

in higher notes occupying many more bins.

Chroma filter bank
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Figure 3.1: Filter bank used for chroma feature extraction in librosa considering a
sampling frequency Fy = 44.1kHz, and a DFT of 4096 samples. Here the x-axis was
converted from bins to frequency for convenience.

The package’s load tools for reading audio files are compatible with most
audio formats found on the web?, but the interpretation switcher was only tested
in .wav files. This type of audio file is the pure sound wave after analog-to-digital
conversion, meaning that there is no loss due to compression, and no decoding
operation to be made in order to read them, as is the case of lossy and lossless
compression formats, such as .mp3 and .flac respectively.

Considering this, and that the final goal of the project is developing a min-
imally functional application for navigating between audio recordings, the project
decision to test and use the switcher only with .wav files is justified, so that any
potential drawbacks related to compression losses or the way librosa handles decod-
ing for lossless compression formats can be avoided. However, the interpretation
switcher handles other subtle audio file differences, such as accepting both mono
and stereo files®, and dealing with audios with uncommon sampling frequencies, as

long as all interpretations of the piece being analyzed are sampled at the same rate.

2 At least with all file formats compatible with the SoundFile Python package, which is the basis
for those load functions. See [40, 41] for a complete list of accepted formats.

3Mono files have a single audio channel, whereas stereo files have left and right channels, which
can have different instruments recorded in them. To handle this, we convert all stereo files to mono
by adding the two channels and dividing by two.
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3.1.2 Audio alignment workflow

As stated in the previous section, the interpretation switcher is heavily based
on librosa functions. Ignoring for now the user interface aspect, which will be seen
in more detail in Chapter 5, the process for navigating through different tracks of

the same piece during playback is as follows:

1. the user gives the audio files containing the recordings that will be reproduced

with seamless navigation;

2. a chromagram is extracted for each one of them, using the librosa convenience

function chroma_stft() with parameters provided by the user;

3. the chromagrams are compressed and normalized, using values for v and ¢

provided by the user;

4. the warping path between all pairs of recordings is found using the dtw()

function from librosa, once again with user defined parameters;

5. the equivalence between frames of each pair of recordings is written in a Python
dictionary 22|, which is then passed to the user interface that plays the audios,

along with the sampling rate used in the files;

6. when switching between recordings is required, the user interface uses the
playback time and sampling frequency of the current interpretation to calculate
the current frame, and then checks the equivalence dictionary to know exactly

where to resume playback in the desired interpretation.

Figure 3.2 shows a diagram containing all the steps mentioned above in the
form of blocks that show the information flow for the interpretation switcher. All
the convenience functions from librosa are wrapped in custom-made functions which
appropriately pass the parameters according to the workflow in the image, and are
contained inside the diagram blocks. Both the parameters provided by the user
and the structure of the dictionary containing the frame equivalences are explicitly
shown next to the corresponding blocks or arrows.

In the final version of the interpretation switcher, the user can choose the fol-

lowing audio feature parameters: window length, number of samples used in DFTs
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Figure 3.2: Diagram showing how the interpretation switcher works. The inward
arrows outside the boxes represent user input and the outward arrow the audio
playback. The structure of the dictionary containing frame equivalences is displayed
in text next to the corresponding block, where X and Y are respectively the indexes
for chromagram X and chromagram Y.

for the time-frequency representation, window function, overlap percentage, nor-
malization norm and threshold, and compression constant. Concerning the DTW,
weighting, calculating alignment with diferent distance functions, and using global
restrictions are available as possible options for the user, but no changes to the

traditional set of neighbor frames of Equation 2.18 are allowed.

3.2 Experiments

To verify that the switcher met all the requirements we have seen earlier, a
number of experiments were conducted. They consisted simply in aligning different
interpretations of the same song, while trying to hear out any musical errors caused
by the DTW, but for some interesting cases, the warping paths were also drawn
over the cost matrix of the alignment to try to visualize possible mistakes in frame
equivalence. These special examples will be explained here in this subsection, where
we will briefly describe the characteristics of each recording, before analyzing the
resulting warping path.

It is important to observe that the DTW has some limitations that restrain

the scope of the experiments we can do. For example, since the DTW is a method
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heavily dependent on the sequence of time frames in the two chromagrams, it follows
that there can be no difference in the music structure of the recordings. If, for
example, one of the interpretations of a piece contains an additional bridge, or
coda, then this part will have no correspondence on the second recording, leading
to a musically meaningless warping path. This is also true for solos, or improvised
sections, which are very common in certain styles, like jazz and rock.

Also, transposing a musical piece causes the chromagram to shift upwards or
downwards of a few half-tones [3], which can make frames very dissimilar depending
on the distance metric used. This affects the total cost, possibly leading once again
to warping paths that are not musically useful, and therefore transposition must be
avoided while using the interpretation switcher?.

Because of this, the experiments shown here are restricted to classical music,
and to pieces where the key and structure are the same, regardless of interpretation
differences. Classical music has the advantage of being very well documented, with
music sheets widely available on the internet, and also of being more rigid in form,

which often ensures the constraints mentioned above are respected.

3.2.1 Musical recording database

Having this in mind, most of the testing done on the interpretation switcher,
and in this project in general, was made using the set of twenty-four Preludes for
piano belonging to Frédéric Chopin’s opus 28 [42]. They have the advantage of
being short pieces very different from each other, thus covering a wide range of
tempos and dynamics. Moreover, they have been recorded by many pianists since
the early twentieth century, allowing us to experiment with varied playing styles and
recording conditions.

The scores for the preludes can be found for free in the Musescore catalog [43],
and music notation software like Finale, Sibelius, or Musescore [18, 17, 16| can be
used to convert it to MIDI, so that a version without interpretation traits can also

be analyzed. Other recordings by famous pianists of the twenty-four preludes were

4This is not an unavoidable issue, but a feature to correct this was not implemented here. If
the musical work’s keys are provided, it is possible to shift the chromagram to transpose one of
them to match the other. Similarly, for recordings that are not in concert pitch, shifting can be
done to correct this, as long as a reference is given, or estimated [3]

44



kindly taken from the personal collection of professor Luiz Wagner P. Biscainho,
who is a classical music enthusiast besides being a signal processing teacher and

researcher.

3.2.2 Heuristics for parameter selection

As we mentioned earlier, the quality of the alignment resulting from the
DTW is heavily dependent on the values of the parameters used in audio feature
extraction, and also in the algorithm itself. Here we will see a couple of examples
that illustrate this statement, and also describe a few heuristics that helped finding

musically significant alignment paths for different types of recordings and songs.

3.2.2.1 Unbalanced weighting

The first of these experiments is the comparison through alignment of two
recordings of the seventh Prelude of Chopin’s opus 28, one by Brazilian pianist
Nelson Freire, and the other by his Italian colleague Maurizio Pollini.

The latter is known for his intellectual and relatively formal approach to
music, with very conservative interpretations relying heavily on what is written in
the music sheets, allowing little room to dynamic and tempo variations not explicitly
indicated by the composer originally. Freire, on the other hand, while certainly
not a melodramatic musician, is much more liberal in the sense of using unwritten
variations in tempo and dynamics as a way of expressing himself.

The pair, along with Prelude No. 7’s characteristic pauses and pedal notes,
makes for an interesting example of the musical equivalence found by the DTW.
The repetition of long notes associated to the interpretation difference between the
two pianists creates tricky similarities among parts of the piece, which sometimes
leads to misalignment.

Figure 3.3 shows the warping path over the cost matrix of the comparison
between these two versions of Chopin’s piece. Being small recordings lasting no
longer than one minute, a standard Hann window of 4096 samples with 50% overlap
was used to calculate the chromagram, which was then compressed with a log-

constant of 10 and normalized using ¢ = 0.0001. In this first experiment, the
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standard DTW was used; neighboring constraints were limited to the closest frames,

and no weighting was applied.

Prelude #7 - M. Pollini vs. N. Freire
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Figure 3.3: Warping path over cost matrix for the two recordings mentioned above.
In it we can see the large quantity of horizontal and vertical stretches caused by
similar note sequences ocurring along the piece.

The most notable aspect of the warping path shown is the quantity of horizon-
tal and vertical patches, which indicate that a large segment of one of the recordings
was attributed to a small portion of the other. Freire’s version is shown along the
horizontal axis, and Pollini’s is represented on the vertical one, and we can no-
tably observe the large horizontal stretch happening around the 100* frame of the
recording by the Italian pianist (roughly at 00:04 considering the sampling rate of
44.1kHz), which indicates that several frames of Freire’s recording were musically
attributed to a single moment in Pollini’s version.

Coincidentally, this part of the piece consists of three sustained chords played
in sequence, and Freire lets them sound for much longer than Pollini. Both the
similarity between the frames corresponding to the chord series and the pause added
between them by Freire create a situation where the switching algorithm is not able
to identify which chord it is in, introducing errors that might propagate in the
warping path.

To solve this, we can use an intuition opposed to the one presented in [3],

where the author suggests the use of weights to compensate for diagonal tendencies
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in the DTW. By making horizontal and vertical steps more costly, we can force the
algorithm to stay on track with the song progression, avoiding the long equivalences
present in Figure 3.3.

Using a ratio of 1/3 between the diagonal and horizontal /vertical steps of
the DTW without changing neighboring conditions provided results more musically
significant than using the standard values or the ones proposed in [3|, all without
excessively favoring diagonal paths. Figure 3.4 shows the results of aligning the
same interpretations as before with the same parameters, only changing the weights

used to wq = 1, w, = 3, and wy, = 3.

Prelude #7 with weighting - M. Pollini vs. N. Freire
i t | = - - RS . - )

800 i Warping path * 2 = = 0.8
1 .
. Tw e S — L ol
700 4 0.7
| it il
!‘ l»l: 'R L T m “r;l L L] A § TR
600 ‘ 0.6
| o
3 i i g
8 500 v 0.5 s
= &
S ozt : St s
c 400 0.4 c
© 1 : )
N S
300 L ] " w "y » 7 O 3
1
200 i i s " “j - - R 0.2
100 A m ‘ " S e | 0.1
- i "N B
0 s e - [ . == L ™ 8= i L
0 200 400 600 800 1000

Frame (index)

Figure 3.4: New warping path calculated using the modified DTW, displayed over
the same cost matrix as before. The use of weights that increase the cost of horizontal
and vertical steps relatively to diagonal ones reduces the number of cases of extended
attributions to one frame.

It is possible to see that the modified weighting sharply reduced the number
of horizontal and vertical patches in the warping path, and this is reflected during
switching, with greater musical accuracy when changing between interpretations.
The result is better than before, but still, as it is possible to see in the small hori-
zontal stretches in the warping path, there is some confusion in frame equivalence

caused by the sustained, repeated chords of Prelude No. 7.
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3.2.2.2 Enhanced compression

To further enhance switching to reach the objective of seamless change be-
tween recordings, another heuristic that proved useful was increasing logarithmic
compression. As seen in Section 2.2.2; the interest of using a flexible log scale in
our audio representations is being able to adjust the dynamic range of chromagram
values in order to allow significant low magnitude bins to help distinguish between
frames, avoiding the predominance of just a few high magnitude bins.

If the compression constant v is not properly chosen, the DTW algorithm may
not be able to detect differences between frames, since their vectors will be relatively
similar. Very large values will compress the chromagram to the point where frames
are indistinguishable because of the reduced dynamic range, while values too small
will cause subtle, but relevant, content to be eclipsed by the chromas having the
highest magnitudes. This can lead to less meaningful features that cause sub-optimal
alignment in the musical sense, because the similarity may cause the algorithm to
choose, for example, to align the sustain and the decay phases of the notes in one
of the recordings to just the sustain part of the notes in the other. The resulting
error could propagate along the warping path, leading to the same horizontal and
vertical paths as before, and creating an alignment that will not sound seamless
during switching.

In Figure 3.5 we can observe the warping path over the cost matrix for the
same experiment as before, once again using a three-to-one weighting ratio, but this
time increasing the compression constant v from 10 to 100. It is possible to see that
the dynamic range of frame values was decreased in comparison to Figure 3.4, but,
more notably, the warping path was smoothed out with reduction in the size and
number of horizontal stretches. A long horizontal patch remains around frame 1000
of Freire’s recording (minute 00:46), but this is due to the long ending notes played

by the Brazilian artist in his version of the piece.

3.2.2.3 Number of frames and processing time

Another important aspect to be considered when choosing parameters for the

interpretation switcher is the window size to be used. As we have seen in Chapter 2,
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Prelude #7 with increased compression - M. Pollini vs. N. Freire
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Figure 3.5: Alignment calculated for the same experiment as before, once again
using unbalanced weighting, but this time increasing the constant for logarithmic
compression. The dynamic range of the original chromagrams decreases, leading to
better distinction between frames.

using shorter or longer windows in the STFT influences time-frequency resolution,
possibly causing some events to be imprecisely represented in one of the two domains.

Therefore it is fundamental to choose a window large enough to accurately
represent frequency content without making it excessively small, causing time infor-
mation loss. For most test pieces, a default 50% overlapped window of 4096 samples,
corresponding to roughly 92ms using the standard sampling rate of 44.1kHz, per-
formed well enough.

However, a careful consideration of the processing time of the DTW must
also be made before choosing the window length, otherwise the user may have to
wait for some time before the switcher is ready to start. To illustrate this, we will
observe a second experiment, consisting of the alignment of two recordings of the
first movement of Beethoven’s famous Symphony No. 5: one in the Liszt’s piano
version played by the Russian musician Konstantin Scherbakov (in a 2006 recording
published by NAXOS), and other in a traditional orchestral version conducted by
the Austrian conductor Herbert Von Karajan (in a 1963 recording with the Berlin
Philharmonic Orchestra, issued by Deutsche Grammophon).

Figures 3.6 and 3.7 show the warping path over the cost matrix of the

exposition part of the movement, which covers more or less the first two minutes of
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both recordings, and essentially evolves around the piece’s famous four note rhythmic
motif. The difference between the two images is that the first was constructed using
the proposed standard window of 4096 samples, while the second was made using

windows four times larger, but keeping the same choices of the remaining parameters.

Symphor]1y No. 5 with 4096 samples windows - Karajan vs. Scherbakov
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Figure 3.6: Alignment of Beethoven’s Symphony No. 5 using the standard win-
dow size found to be useful for the switcher: 4096 samples. The piano version by
Scherbakov is displayed on the horizontal axis, and the orchestral version of Karan-
jan conducting the Berlin Philharmonic on the vertical axis. This example shows
how chroma features are capable of handling recordings made on different instru-
ments or groups of instruments.

The first noteworthy outcome of this experiment is that it demonstrates the
robustness of chroma features, even for comparing performances with different in-
strumentation. The alignment was performed on parts of the recordings which were
about the same size of the preludes of the previous case, in order to avoid mak-
ing horizontal or vertical patches look smaller because of the image scale. Yet, it is
hardly possible to see any large stretch that could indicate abrupt switching between
the recordings.

Another interesting fact is that there is little difference between the two
warping paths. Even though the second image uses a much larger window size,

there is practically no loss in alignment quality thanks to the fact that the windows
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Symphony No. 5 with 16384 samples windows - Karajan vs. Scherbakov
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Figure 3.7: Alignment of Beethoven’s Symphony No. 5 using a window size of 16384
samples. In this case, enlarging the windows did not cause any loss in quality for
the alignment, but it reduced the processing time of the algorithm.

used were still small enough to adequately portray time domain events like note
onsets and decays in our audio feature representation for the piece.

This can be used to the user’s advantage when dealing with very large pieces
such as this one. If the recordings do not contain fast paced parts whose information
could be lost when using a large window, an alternative to reduce processing time in
the switcher is increasing window size without changing overlap so that the number
of frames to be analyzed by the DTW can be reduced.

Aligning the whole first movement, which is 07:17 minutes long in the pianist’s
version, and 07:14 in Karajan’s, the total processing time for 4096-sample windows
was 12.6s, against 5.5s for 16384-sample windows. When extending this to a full
piece, which could easily exceed 30 minutes — as is the case with the complete
recordings of Symphony No. 5 — the result could be too long a wait time to make
interpretation switching a feasible feature in an audio player, especially considering
that more than two recordings of the same piece could be added, which should be

pairwise aligned before the switcher could run.
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3.2.3 Results

Aside from weighting, compression, and window size combined with overlap,
the parameters used both in the DTW and in audio feature extraction do not seem
to provide significantly better warping paths when changed. Because of this, the
following parameters are set as default for the switcher in all other experiments pre-
sented here: 4096 samples Hann windows with 50% overlap, 4096 points for the DF'T,
compression constant 7 = 100, normalization constant ¢ = 0.0001 with Euclidean
norm, and cosine distance with standard neighboring conditions and three-to-one

weighting for the DTW.

3.2.3.1 Effect of silences in the warping path

An interesting result from the interpretation switcher, and also one that
must be taken into consideration when aligning different recordings, is the effect of
silences in the warping path. Most commercial recordings of any genre contain a
few seconds of silence in the beginning and end of each track, so that they can be
clearly separated when played in sequence in a CD or other format.

Up until now the recordings used in the examples presented were stripped
off of these silences, since we were more interested in seeing how parameter choices
could modify the frame equivalences found by the switcher. However, it is important
to notice that they will be taken into account by the DTW when the warping path
is calculated, which could possibly cause problems in alignment.

To illustrate this, we will see two images corresponding to the warping path
over the cost matrix of M. Pollini’s version of Prelude No. 4 when aligned with a
computer generated version of the same piece without any additional silence. The
technique used to create this synthetic version of Chopin’s work was the same that
will be further explained in Chapter 4, but for now it is enough to say that it is
equivalent to a recording of this song without any interpretation nuance whatsoever.

This prelude has a very rhythmic left hand, which marks the pace of the
piece, and a simple melody with few notes throughout most of its duration. Close
to the end, however, it has a sequence of fast notes followed by a return of the

previous simple melody. The expectation when aligning these two .wav files is an
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almost perfect alignment, given that Pollini is very respectful to what is written in
the music sheet, and does not add many dynamic and tempo variations to the piece.

However, as it is possible to observe in Figure 3.8, with Pollini’s version on
the x axis and the synthetic version on the y axis, when the piece approaches the
end, more or less at frame 1750 of the Italian pianist’s version (roughly at 01:20
considering Fy = 44.1kHz), the warping path strays from the diagonal route, which

could mean an inaccurate frame equivalence, considering how strict Pollini is.

Prelude #4 - Computer vs. M. Pollini
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Figure 3.8: Warping path over cost matrix for Pollini’s recording of Prelude No. 4
when compared to a computer generated version of the same piece. The fact that
Pollini’s version contains silences in its end for commercial reasons causes the DTW
algorithm to get lost near the end of the piece.

By listening to the recordings using the interpretation switcher it becomes
clear that the warping path becomes messy just after the change of pace in the
melody. The impression is that the DTW is not able to assign frames between the
recordings having in mind the change in rhythm near the end. This is not caused
by any poorly adjusted parameter, or by intrinsic characteristics of the piece or the
recordings that make alignment hard in this case, since there aren’t any.

The problem is simply that, near the end, the DTW has to take silent frames
into account when calculating the optimal warping path, which cascades in the frame
equivalence near the end of the recordings. When these frames are removed from

Pollini’s recording using an audio editing software like Audacity [28], the warping
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path becomes much more diagonal, and switching does not sound inaccurate any
longer.

This can be verified in Figure 3.9, which contains the same alignment as
before, but this time with the silences removed. It may sound too specific to analyze
this case considering that most commercial recordings have silences near their ends
that could be considered more or less equivalent, but besides the fact that these
silences may vary in length, we will see in Chapter 4 that aligning human recordings
with these computer generated versions can be very useful for score following, with

silences having a significant impact on performance.

Prelude #4 without silences - Computer vs. M. Pollini
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Figure 3.9: Same example as in Figure 3.8, but this time with the silences removed.
It can be seen that the warping path becomes much more diagonal, indicating that
taking silent frames into account can decrease the quality of the alignment found.

The automatic removal of such silences is possible, but is not implemented
in the interpretations switcher. To add this feature, a possible solution could be
simply removing all samples below a certain threshold at the beginning and end
of the audio files before processing them. In all examples presented from now on,

recording silences are manually removed, unless stated otherwise.
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3.2.3.2 Effect of noise on the warping path

Given that it might be desirable for the user to analyze interpretations
recorded by artists not alive anymore, or even to compare recordings made by the
same person, but on different dates, it is also important to observe how the switcher
performs on noisy recordings.

The combination of the DTW with chroma features proved itself to be fairly
robust to noise, and to verify this, we can observe the alignment of two versions of
Chopin’s Prelude No. 3: one by N. Freire, recorded in the same year as the ones
that were analyzed here before, and another by French pianist Alfred Cortot, from
1925.

If all of Chopin’s interpreters presented so far were ordered by their respect to
dynamics written on the music sheet, from the less rigid to the most formal, Cortot
would certainly be first on the list, with more nuances than the other two, then
followed by Freire and his intuitive playing style, before finally reaching Pollini’s
deep respect for the music score.

Nevertheless, despite the fact that there is a difference in the level of dynamic
and tempo variations introduced by Freire and Cortot, this example can be seen
independently from the differences between the two musicians because Prelude No.
3 contains a very fast and rhythmic left hand that limits the amount of nuances that
can be added by the pianists.

Being so, this becomes a good test case for the performance of the algorithm
on noisy recordings, since Cortot’s version is filled with background noise inherent
to the techniques available for music recording in 1925. The warping path over cost
matrix for the comparison between both pieces is available on Figure 3.10, with
Cortot on the x axis and Freire on the y axis.

It is remarkable how the alignment path remains diagonal and how the overall
distance values remain low despite the fact that the French artist’s interpretation
is heavily degraded by background noise. This can be explained thanks to the
preprocessing steps seen in Chapter 2.2.

The background noise present in the oldest version is spread more or less

homogeneously across the frequency spectrum. When pooling is performed in order
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Prelude #3 - N. Freire vs. A. Cortot
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Figure 3.10: Alignment between two recordings of Prelude No. 3, by N. Freire,
and A. Cortot, with the latter being an old recording from 1925. It is possible to
observe that the warping path’s diagonal trajectory is mostly maintained despite
the presence of noise. This robustness in given by the preprocessing steps seen in
earlier chapters.

to construct the chromagram, all chromas are similarly affected, thus keeping bin
profiles approximately the same.

After normalization, the effect of noise virtually cancels out, since it is applied
to all bins; and as the rows corresponding to the notes being played have larger
magnitudes, we obtain representative features even in the presence of noise. The
problem happens when the noise in a given recording either is present only within
a specific frequency range or is so intense relative to the signal that the magnitude
added by the notes is insignificant, to the point of producing almost random features.

The latter can be seen in Figure 3.10, where in the end of Cortot’s recording,
as the last note played gradually fades into silence, the ratio between signal and noise
slowly decreases, creating random audio features. The result is that the distance
between the last frames of the two recordings is much larger than throughout the
rest of the alignment, as the dark line on the top of the image indicates.

This result shows that the way the audio features used in the alignment are

built adds some robustness to the method. Cortot’s 1925 recording can be considered
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a fairly extreme example of noisy recording, and is definitely not the typical use case
of the interpretation switcher. However, the fact that the algorithm performs well
on his version shows that broadband noise should not be an issue in most alignment
tasks, at least not as long as there are not other factors that can influence the quality

of the warping path.

3.2.3.3 Effect of large interpretative variations in the warping path

There is a limit to how much the DTW is capable of stretching one interpre-
tation so that it can find the best possible warping path to another one. When two
versions of a piece differ too much in tempo and dynamics, some distortion surely
will appear on the warping path.

The most common situations in which these distortions tend to occur are
sequences of identical chords or notes, especially if their duration or if the pauses
between them can be shortened or enlarged depending on the effect the artist wants
to pass to the audience. This occurs naturally because the DTW will be forced to
make attributions of multiple frames to one to compensate the duration differences
between the interpretations.

To highlight this effect, we will see the alignment of just the first repetition of
the characteristic motif of Beethoven’s Symphony No. 5 in two orchestral recordings,
one by Italian maestro Arturo Toscanini (with the NBC orchestra, in 1952), and
another by his German contemporary Wilhelm Furtwangler (with the BPO, in 1954).
While Toscanini conducts the symphony in a very dry way, shortening the silences
and the duration of the final note of the motif, Furtwangler makes them as long as
possible to create a feeling of tension to the listener.

When listening to the alignment, if switching is made exactly on the second
note of the second repetition of motif, the impression when going from Furtwangler’s
version to Toscanini’s is that a note was missed from playback, as if the second
orchestra simply had forgotten to play it. In fact, what happens is that for this note
there is an incorrect frame attribution that makes most of the second and third notes
in the German maestro’s version equivalent to the third note in the other recording,

causing this abrupt change.
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In Figure 3.11, this corresponds to the second long horizontal frame attribu-
tion happening around frame 125 (roughly 00:06) of Furtwangler’s version, which is
displayed in the horizontal axis. The other two horizontal stretches happen exactly
during the silences between the motifs, and occur because Toscanini is much more

concise in their use than Furtwangler.
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Figure 3.11: Alignment between two orchestral versions of the characteristic motif
of Beethoven’s Symphony No. 5, one conducted by Arturo Toscanini (vertical axis),
and the other by Wilhelm Furtwangler (horizontal axis). The three long horizontal
stretches in the warping path are a consequence of the startling differences between
the interpretations of the two maestros.

This may seem like a bad example since the horizontal patches in this warp-
ing path look larger than before because the excerpt of the piece that was analyzed
is very short. However, it not only shows the effect that many to one attributions
can have on listening while using the interpretation switcher, but it also demon-
strates that the DTW has clear limitations related to how much it can distort one
interpretation to fit into the other without generating musically incorrect frame
equivalences.

In Chapter 4 we will analyze in further depth examples like the one in Fig-
ure 3.9, consisting of comparing real recordings with computer synthesized versions
of the pieces, and we will see that these horizontal and vertical patches happen
frequently in these situations because of the acoustic differences between synthetic

and real recordings, and also because of the lack of interpretation in the artificial
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versions. Then, it will be important to be aware of this limitation of the method to

understand the results presented for score following.

3.2.4 Typical use case

To synthesize the results of interest for the interpretation switcher, we will
see a final example representing a typical use case of the system. It consists of the
alignment of two recordings of Prelude No. 18 of opus 28 by Chopin.

This is a very hard piece in terms of performance, mainly because of rhythmic
structures that make it difficult for the artist to find the beat and maintain tempo.
Because of this, there is almost always a significant difference in its execution by
different interpreters, which is precisely what we want to be able to identify thanks
to the switcher.

The two artists we will compare are Alfred Cortot, once again, but this time
in a recording of 1955 — less noisy than the one from 1925, but still ‘dirtier’ than
a modern recording — , and Frangois-René Duchable, a French pianist who can be
considered to be even more strict and formal than M. Pollini. The latter’s playing
style is so cold, that even for this piece it presents little variation in tempo, despite
the fact that it is very rhythmically challenging. Cortot, on the other hand, was
already old at the time of this recording, and not only takes immense liberties with
tempo and dynamics as usual, but also plays several wrong notes and truncates
some difficult passages.

Figure 3.12 shows the warping path over the cost matrix of the comparison
between the two recordings, with the version by Cortot in the horizontal axis, and
the one by Duchable in the vertical axis. Like in most cases for the interpretation
switcher, the warping path is not fully diagonal, but presents few and short many
to one attributions.

The short horizontal stretch that occurs around frame 600 of Cortot’s version
(about 00:27 minutes into the recording), is caused by a pause in his interpretation
that is much longer than indicated on the music sheet, as opposed to Duchable, who
strictly respects the score in this moment of the piece. Other two short horizontal
patches appear just before this, and are also consequence of Cortot’s dramatic pauses

after certain support chords.
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Figure 3.12: Alignment between two versions of Chopin’s Prelude No. 18, one by
Alfred Cortot (recorded in 1955) and another by Frangois-René Duchéble. There
are considerable interpretation differences between the recordings, but the warping
path found remains more or less diagonal. Cases like this one, where there are
interpretation differences, noise, and possible small mistakes by the musicians can
be considered to be a typical use case situation for the switcher.

All in all, it is interesting to observe a real use case for the interpretation
switcher. In this example we can see its performance when there are differences in
recording quality and noise, variations in playing style, and even occasional mistakes
by the musicians.

It shows that the method is able to respond with considerable robustness to
some of the challenges of finding equivalences between instants of different recordings
of the same piece. Despite still being vulnerable to extremely large interpretative
differences and to the pitfall of end-of-recording silences, the method still performs
well in the presence of noise and was able to find musically correct equivalences for
most parts of the songs analyzed.

The concepts seen in this chapter will be useful to understand the working
and performance of the other block of the project: the score follower. Its functioning
relies heavily on using the same method presented here to align computer generated
versions of the pieces being analyzed with human recordings of them. In Chapter 4

we will see how these synthetic music recordings can be used to identify where a
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musician is in the music sheet, and how to use this to display the score and follow

it in real time.
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Chapter 4

The Score Follower

Score following composes the second important block of this project. Given
that with the interpretation switcher it is possible to hear the differences between
two different versions of the same musical piece, it is very important for educational
purposes to also be able to know which part of the score is being played at any
moment where there could be switching. To study two pianists and their style
differences in a certain piece, for example, it is not enough to hear the way they
both play the piece, it is also necessary to contrast both recordings with the music
sheet, so that there is a base reference for comparison.

Being so, the core idea of the score follower is displaying the score for the
piece being analyzed in the interpretation switcher, so that this reference is available
for the user without needing to open the music sheet in a specialized viewer. But
more than that, it is also to be able to mark the notes being played in any given
recording in execution time, to make the system accessible for beginners who might
not have mastered reading music yet.

Score following is still an active research topic and here we will see how it is
implemented in the web app using the alignment techniques that were seen earlier.
In particular, we will verify the limitations of the libraries for reading and displaying
scores, and also observe the performance of their combined use with the DTW for

following a score.
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4.1 Implementation

For the score follower, two different problems need to be solved: rendering
the score on a screen for the user, and mapping an instant of a recording to the
corresponding note in the displayed score. For the latter, the intuition is to create a
computer synthesized audio version of the score, and then obtain the onset instant
of each note by counting the number of beats! coming before it and dividing the
result by the tempo given in beats per minute. The onsets of the notes in any other
version of the same song can then be found using a D'TW frame equivalence between
the synthesized version and the recording.

For the former, however, no intuition was enough to make score rendering
in Python a simple task. A first demo was made using Kivy [44], a Python library
for cross-platform graphical user interface development, but coding the drawing
of all possible music notation symbols on the interface soon became excessively
complicated. Because of this, the score follower is redeveloped here as part of the web
app, in order to make use of some Javascript libraries that make score rendering both

simpler and friendlier to the most common digital music sheet format, MusicXML.

4.1.1 Rendering digital music sheets

Nowadays, sheet music is available in many different formats. From old paper
scans in .pdf files, to markup languages that describe each symbol in a score, there
is a plethora of ways to digitally display music scores. Software with proprietary
music sheet formats, like Musescore [16], Finale [18], and Sibelius [17], are in general
also score editing computer programs, and not only do they read and display music
notation, but they frequently allow the users to hear and edit the scores they wish.
As an example, a screenshot of Musescore’s interface is shown in Figure 4.1.

In the past, using professional software like these posed a very simple incon-

venience: not being able to translate scores between different proprietary formats.

1Beat here is understood as the duration of the note as a reference for a tempo instruction given
in beats per minute. If the beat is, for example, a quarter note, then this means that in a 180bpm
performance the first minute will contain the equivalent of 180 quarter notes. It is important to
observe that this could mean 360 eighth notes, 90 half notes, 45 whole notes, or any other suitable
combination.
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Figure 4.1: Musescore screenshot for a music sheet for the first movement of
Beethoven’s Symphony No. 5. The screenshot was made during playback to il-
lustrate Musescore’s functionality of being able to synthesize the music sheets it
reads.

To solve this, Michael Good created in 2001 the MusicXML format [7], with the
goal of creating a standard file extension for interactive music sheets.

MusicXML is a tag markup language, very similar to the standard XML in
which it is based, and to other markup formats like HTML. Essentially, every music
element, including notes, measures, staffs and clefs is represented with a tag that
can have attributes, like the number of a measure or the identification number of an
instrument part, and child elements, such as note tags inside a bar element.

Today, .musicxml files and their compressed versions, .mxl, are the de facto
standard for sharing music sheets via the internet, with more than 250 applications
currently supporting it, according to the format’s website [45].

MusicXML became mainstream in the web development environment when
libraries capable of parsing .musiczml files, and drawing music notation on the
browser using HTML’s canvas and svg tags started appearing. An example of the
former is OpenSheetMusicDisplay (OSMD) [46], the library that is used to render mu-
sic sheets for the score follower, which is powered by VexFlow [47], a music engraving

package that falls into the second category mentioned above.
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Basically, OSMD works as a bridge, parsing all tags in the .musicmzl, and
delivering the necessary information to the correct VexFlow methods responsible
for effectively drawing music notation. The full list of features and limitations of
OpenSheetMusicDisplay can be found in the project’s GitHub page [48], but it suffices
to say that the library covers the most common symbols in music notation, like beat

signatures, notes, rests, crescendos, and much more.
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Figure 4.2: Screenshot of a music sheet rendered in a blank web page using Open-
SheetMusicDisplay. OSMD covers the most common music notation symbols, and
also provides options for controlling drawing margins, changing the score’s font
family, and more.

Figure 4.2 shows the result of rendering the same score of Figure 4.1 on a
blank web page using OSMD. The package allows to control several aspects of the
final display, such as: changing the margins to the borders of the HTML container
holding the score, using different font families for lyrics, and choosing not to showcase
the title and author of the piece in a header.

The reader might observe in Figure 4.2 that there is a bright green rectangle
hovering over the first bar of the music sheet. That is OpenSheetMusicDisplay’s
cursor, the element that is used to mark the notes currently being played in the
score follower, and we will see later how it can be moved around for this purpose

along audio playback.
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4.1.2 From score to second

OSMD’s cursor is not simply a graphical element displayed in the music sheet.
Like all visual components of the score, it is represented in code through a Javascript
object, but differently from the other objects in OSMD, it comes equipped with
methods and accessors that enable iterating through all rendered MusicXML tags,
extracting information from them.

For better understanding, in the following few paragraphs, all OSMD objects
will be referenced to as capitalized camel case words in italic bold font, while prop-
erties and methods will be written in plain italic, also using camel case. Methods
will be distinguished from properties by being followed by empty parentheses.

The Cursor has a child object called the Iterator, which can be moved from
symbol to symbol using its method moveToNext(). At every stop, the Iterator can
access two important properties, that are: the currentMeasurelndex, corresponding
to the current bar’s number, and the currentTimeStamp, representing the elapsed
time in the score, measured as the sum of the numeric values of the lengths of all
notes passed.

For example, if the Iterator is on a quarter note preceded by two half notes
and one eighth note, the meaning of the last sentence is that the currentTimeStamp
at this moment will be equal to 1.375 = 0.5 + 0.5 + 0.125 + 0.25.

Based on their index numbers, all Measure objects can be retrieved from
the Sheet, and from them both the instantaneous tempo in bpm and beat reference
note length can be found using the tempoExpressions and tempolnBPM properties.

Combining the timestamp and tempo information, it is possible to create
an array t = [tq,1s, ..., ty] containing the timestamps ¢; in seconds of the onsets of
all notes rendered in the sheet. Denoting the numeric value of the beat reference
length as b, and the current Iterator timestamp as [;, any note timestamp ¢; can

be calculated using the equation

(I — 1) 1
t, =1t ) 4.1
i =t + - X o X 60 (4.1)

Equation 4.1 recursively calculates the note onsets in seconds by converting

the timestamps coming from OSMD to beats by dividing them by b, then converting
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the result from beats to minutes dividing by the tempo in bpm, and finally passing
the resulting onsets in minutes, to seconds. Because every [terator timestamp
difference is calculated before conversion, the formula takes into account possible
changes in tempo during the piece, either because of changes in the reference beat
or in the speed in bpm.

An important remark, however, is that this method is not able to handle mid-
measure tempo changes. Tempo signatures can be placed anywhere in the sheet,
including in the middle of a bar, without causing problems to score rendering. Yet,
since tempo expressions are associated only to measures through the tempoExpres-
sions attribute, it is impossible to associate a tempo instruction to a single note

inside a bar.

4.1.3 Bridging markup and sound

Having the note onsets for an execution of the song of interest without any
interpretation dynamics whatsoever, we face the challenge of creating this synthetic
recording from the music sheet.

As briefly mentioned in Chapter 2.2, the MIDI standard provides a way of
digitally representing music by associating note pitches with 7-bit integers. However,
the format supports more than just representing pitches, and MIDI files can also
store information related to note duration and volume.

Furthermore, MIDI can be synthesized in audio .wav files, opening the possi-
bility of creating artificial recordings without interpretation dynamics, as long as it
is possible to find a way to parse MusicXML instructions into a .mid file. Happily
for this project, researchers at MIT created music21, a Python “open source toolkit
for computer-aided musicology” [49].

In expansion since it appeared in 2008 thanks to Michael Cuthbert, music21 is
a package offering very diverse tools for studying music datasets in Python [49]. Tt is
capable of parsing multiple sheet music formats, and easily converting between some
of them, besides providing an object oriented programming approach to dealing with
music notation in Python.

Originally for this project, the idea was even using music21 to parse and ren-

der .musicxml files using Python only, but in the end this single language approach
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did not work because of music21’s incapacity to create interactive scores such as the
ones generated with OSMD. Even though rendering turned out not to be feasible
using solely this package, music21 still provided a simple and efficient way to parse
MusicXML in Python, and also a convenient way to convert these files to MIDI.

After converting any given score to .mid using music21, synthesizing it as
an audio file ready to be followed using the timestamps calculated earlier is also a
matter of finding the right computational tool for the job.

The tool on which Musescore [16]’s audio synthesis is based, FluidSynth [50],
is an open source, sample based, audio synthesizer capable of creating .wav files
from MIDI. It essentially works using sound fonts, which are pre-recorded notes
from several instruments that can be assembled together during conversion to create
audio based on MIDI instructions.

Conveniently enough, Python has a library called midi2audio [51] that is able
to pass instructions to FluidSynth from standard Python code. The library calls
FluidSynth’s command line tool based on certain parameters given in the function
call, and is able to return clean .wav files from MIDI inputs.

The resulting audio file after conversion using FluidSynth will precisely follow
the instructions saved on the MIDI file, which, thanks to music21, will be an exact,
dried up copy of what is written in the music sheet. When listening to the audio, no
interpretation variations are present, and notes are placed exactly where indicated
in the sheet, with no elongated pauses or silences.

As a consequence, all note onsets happen exactly at the timestamps cal-
culated previously using OSMD’s objects. Based on this, it is possible to know,
in playback time, where to place the cursor so that the score can be followed by

marking the note being currently played.

4.1.4 Calling back the cursor

The problem that remains, after having both the note onsets and the record-
ing that perfectly respects their positions, is actually updating the graphical cursor
on the screen so that the score can follow the audio being played.

Despite being able to iterate over all symbols in the sheet, the Iterator is

invisible to the user. The actual Javascript object that is displayed on the screen is
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its parent, the Cursor, which also comes equipped with methods for moving itself
around the score as well as with some convenient tools for hiding its presence and
resetting its position.

In order to update the Cursor position using its built in next() method, we
need to set up a function callback, which is simply a timer that triggers the execution
of that function in regular periods of time2. Callbacks are a commonly used tool
in web developing, and are useful whenever there are elements in the browser that
need to be regularly updated, like the score display.

To make sure that the Cursor is in the correct position at every moment,
an array containing an ordered copy of the onsets is kept. Whenever the update
function is called back, it removes the first timestamps from the array as long as
the first element remains behind the current playback time. For every onset time
removed from the array, the Cursor is moved ahead by one position, ensuring that
it always tracks audio progression.

Take, for instance, the example of Figure 4.3. The timestamps for this music
sheet, as calculated by OSMD, would be t = [0, 1, 1.5, 2, 3], and we could suppose a
callback updating both the array and the position of the cursor at every 1.5 seconds

after the playback begins.

oo
A

o) I

Figure 4.3: Single bar with five notes used to explain the callback for updating the
cursor. Because the tempo provided is of 60 quarter notes (beats) per minute, it
follows that each quarter lasts one second, and that each eighth lasts 0.5 seconds.

At the time T = 1.5s, the callback would be called into action, and would
pop elements from the beginning of t, until the first element of the array is larger
than 1.5. In other words, it would check that {5 = 0 < 1.5, then remove t; and

move the cursor one position, then verify that t; = 1 < 1.5, pop out t;, and move

2Even though this may sound like asynchronous programming, Javascript actually performs
callbacks synchronously thanks to a smart queuing system that stacks up the remaining tasks once
their timer has expired.
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once again the cursor, before arriving at t5 > 1.5 and obtaining what is shown in

Figure 4.4.

J=60

0 —

D,

Figure 4.4: Same bar as in Figure 4.3, after one timeout for the callback. The cursor
updating system periodically verifies which timestamps have already passed in the
audio.

The algorithm would then continue doing this for all playback times 7" mul-
tiples of 1.5, hence updating the Cursor position along playback. In the example,
certain notes are skipped because the callback interval is too large, but by choosing
an adequate period between cursor updates, it is possible to give to the user the
impression that the update is instantaneous, and that the sheet is followed at every

instant of audio playback.

4.1.5 Score following workflow

The technique described above shows how it is possible to follow a score when
the corresponding audio is a synthetic version with no interpretation dynamics. We
have seen how, from a MusicXML score, we can create a MIDI file, and then use
this .mid to synthesize sound that can be accompanied by a cursor placed in a music
sheet rendered using the same original .musicxml from before.

The commercial software that was mentioned earlier is already able to per-
form these tasks. The difference between the system proposed in this project and
the solutions already existing on the internet is the capability to follow a score not
only using artificial audio, but also using real recordings.

In order to do this, it is necessary to add the techniques seen in Chapter 3 to
the score follower, and think of the DTW as a way to connect human and computer
recordings by using the frame equivalences between them. Supposing that a human
recorded performance needs to be followed from a MusicXML sheet, the workflow

for updating the cursor according to the song playback would be:
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. converting the original .musiceml file to MIDI using a parser, like the one

provided by music21;

. synthesizing an artificial recording without interpretation traces from the .maud

using FluidSynth;

. calculating the frame equivalences between the synthetic version and the hu-

man one using the DTW algorithm, and storing them;

. rendering the music sheet using the MusicXML file from the first step and
OSMD;

. calculating note timestamps with the Iterator class, and keeping them in an

array for consultation;
. repeating, in short intervals of playback time, the steps of:

(a) finding the equivalent frame in the artificial recording,

(b) calculating the equivalent instant in the synthetic version by converting

frames to seconds,

(c) checking the first element of the timestamps array to see if an update is

required,

(d) moving, if necessary, the cursor until its next calculated timestamp is just

after the current playback time.

A block diagram summarizing this routine can be seen in Figure 4.5. In it,

the left side represents the user interface where the input is provided, and also where

the score is rendered to the user. The blocks represent the packages, objects, and

algorithms discussed earlier for producing each one of the partial outputs necessary

for the score follower.

It may seem odd that libraries in different languages are used to parse the

.musiceml in order to create the MIDI file and render the score, just as saying that

the DTW is being called to find the frame equivalences, considering that it also uses

libraries in Python, as opposed to OSMD’s Javascript. This is a subject that will be

explored in further details in Chapter 5, where we will also see how the user interface

was incorporated in both the score follower and the interpretation switcher.
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Figure 4.5: Block diagram explaining the relation between the components of the
score follower. Once again, the inward arrows indicate user input, and this time
the output represented by the outward arrow is the interactive score in which the
cursor is updated to follow audio playback. Certain components of the score follower
are used in the server side of the application, while others are called in the user’s
browser, which is why all elements seen before are contained in one of these two
blocks in the diagram.

For now, it is enough to know that rendering the score, calculating the times-
tamps and updating the cursor are operations that are happening on the web page
only, whereas the other steps of the process are performed before loading the web-
site in the browser using a Python back end. The files and information needed for
Javascript to perform the update callbacks are all stored in the server thanks to
these hidden operations, and are fetched back and sent to the user’s browser for the

following.

4.2 Tests

To test the score follower, free versions of the scores for the pieces mentioned
in Section 3.2.1 were found in [43|, and were then provided as input to the system
alongside the human recordings for these songs. Therefore, Chopin’s twenty-four

prelude set was once again used to test the performance of the system, but this time
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comparing the evolution of the cursor on the screen to the sound coming from the
playback of the original versions of the pieces.

The scores were not changed in any manner whatsoever, except for handling
factors which were not perfectly managed by OSMD. This includes, in particular,
mid bar tempo changes, which are not supported for timestamp estimation. For
these cases, the written tempo changes were advanced to the beginning of the bar
they were into, possibly replacing a preexisting tempo signature.

As before with the interpretation switcher, it is unfortunately not possible to
reproduce this sort of experiment on plain text because of the need to hear and see
the performance of the system to evaluate it®. To compensate for this, we will see
the warping paths over cost matrices of the alignment between the synthetic and
human recordings, as was briefly discussed in Chapter 3.

The quality of the alignment between the synthesized MIDI and the origi-
nal recordings says a lot about the audiovisual performance of the cursor updates.
Callback strategies and the technological tools used may vary in order to make esti-
mating timestamps and updating the cursor more precise, but if it is not possible to
find a musically significant frame equivalence between the artificial versions and the
real ones, it is certain that score following performance will drop using the proposed
method.

In the following tests, we once again look for elements in the warping path
that could indicate that the score follower is unable to pinpoint the exact equivalence
between versions of the same piece. This time, however, because the times in the
synthesized recording represent a position in the score, distortions in the warping
path express themselves as updates coming too late or too early for the cursor,

instead of delays in sound.

4.2.1 Test One — Prelude #4 by M. Pollini

In Chapter 3 we quickly discussed the effects of silence in alignment, and
exemplified these results by comparing a human recording of Chopin’s Prelude No.

4 and a synthetic version of the same piece. In this first test, we will see once again

3This text was originally published alongside a presentation containing videos showing the
performance of the switcher and follower. For more information, please contact contact professor
Luiz Wagner P. Biscainho or myself.
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the effects of end-of-recording silences with the same example of Section 3.2.3.1, but
this time applied to score following.

Back in Section 3.2.3, we briefly mentioned that the case of aligning artificial
and ordinary recordings was important because of its impact on the performance of
the score follower. Indeed, in view of the previous sections, it becomes clear that
problematic frame equivalences between the synthesized scores and the real ones will
create issues on score following because of the callback used to update the cursor.

When moving the cursor, first the equivalent time to the current playback
instant is obtained in the artificial recording. Then, this value is passed for compar-
ison with the timestamps vector calculated from the score, and the cursor is moved
forward as long as the next stamp remains behind this equivalent instant in the
synthetic version. The consequence is that, if there is an error in the equivalent
time due to a musically incorrect warping path, then the cursor will be updated at
the wrong moment, creating a time difference between the audio and the position
of the follower in the score.

Figure 4.6 shows the position of the cursor at playback minute 01:22 of
Pollini’s version, when following the recording with trailing silences in its begin-
ning and end. When listening to the recording, it is possible to notice that, at this
moment, the piece is in fact a few notes ahead (see position manually marked in
red) of the position marked by the cursor.

Reexamining Figure 3.8, it is possible to see that the warping path strays
from the diagonal path around frame 1750 of Pollini’s version, which is roughly
equivalent to minute 01:20 after conversion using F; = 44100Hz. This gives a feel of
the visual impact of incorrect warping paths on score following, and highlights the
importance of silence removal for correct alignment between human and synthetic
recordings.

After removing trailing silences, which do not affect the time instant where
the same note of the previous example occurs, that is, playback minute 01:22; the
cursor position appears right next to where it should be, with this small one note

mistake probably being caused by the grace note? placed just before. Since grace

4Grace notes are musical notes which are non essential to the melody being played. They are
used as ornaments to other notes, and as such do not have a length associated to them.
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Figure 4.6: Screenshot with the cursor position at minute 01:22 of M. Pollini’s
recording of Prelude No. 4 while score following. The cursor is a few notes behind
of where it should be (indicated in red), an error caused by the imprecise warping
path calculated taking account of end-of-recording silence.

notes technically do not have a specified duration, OSMD reads them as having
length zero, which explains the small shift from the expected position.

This example once again highlights the importance of removing trailing si-
lences when aligning different versions of a given piece, but, more importantly, gives
a visual feel of the impact of incorrect frame equivalences in score following.

If there are long horizontal or vertical patches in the warping path between
a recording and the synthesis of the score, or if the alignment calculated strays too
far away from the diagonal direction, this means one of the audios is lagging behind
the other, and therefore there are several many-to-one frame attributions in the
alignment. Visually, the consequence when score following is that either the cursor
will remain in the same place while the audio is long past the note it currently hovers

over, or it will move faster than playback, marking the wrong notes in both cases.
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Figure 4.7: Screenshot with the cursor position for the same recording as before, but
this time without trailing silences at the end of the recording. The cursor position
is placed much closer to the correct one, with the small error probably being caused
by the grace note placed just before the note being examined.

4.2.2 Test Two — Prelude #7 by N. Freire

As we have briefly seen in Section 3.2.2, another factor that might influence
the resulting warping path from the DTW is the presence of pedal notes. Back
then, when we compared M. Pollini’s and N. Freire’s versions of Prelude No. 7, it
was possible to observe that the similarity between frames containing long sustained
notes could cause errors in the alignment.

Even though the heuristics we have seen previously help mitigate this effect,
some imprecision remains in the resulting frame equivalences. This becomes partic-
ularly noticeable when following the score because of the visual effect of the lagging
cursor when compared to the audio.

Figure 4.8 shows the warping path over the cost matrix of the comparison
between N. Freire’s recording of Prelude No. 7 and the synthesized score of the
same piece, with the Brazilian pianist’s version represented in the x axis. There are

several regularly spaced horizontal patches corresponding to interpretative emphases
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not executed by the machine, with the most noticeable three occurring around frames

380, 700, and 1000 of Freire’s version.

Prelude #7 - Computer vs. N. Freire
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Figure 4.8: Warping path over cost matrix for the alignment of Freire’s version of
Prelude No. 7 and a synthesized version of the score. It is possible to observe regu-
larly spaced horizontal patches in the warping path corresponding to the sequences
of long identical chords in this piece.

In these portions of the alignment path, many frames of Freire’s recording —
possibly corresponding to notes that have been sustained for interpretative reasons
— were attributed to a single frame of the synthesized score. Since Prelude No.
7 contains many long identical chords, frames belonging to each of these are very
similar, which blurs the distinction between the chords for the DTW, and causes
excessively long horizontal patches in the warping path.

Figure 4.9 shows the position of the cursor at minute 00:18 of Freire’s record-
ing (corresponding to frame 387 using Fy, = 44100Hz), along with, once again, the
correct cursor position drawn in red. The cursor is one note behind the audio be-
cause there is a sequence of two identical sustained chords played with very soft
attacks.

It is important to note that the attacks also play a role in separating the
identical chords. Sequences of identical notes that are played very softly will present
the same energy in the same chroma bands, since the variations in magnitude on

the note onsets will be less noticeable.
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Figure 4.9: Screenshot with the cursor position for the follower at minute 00:18 of N.
Freire’s recording of Prelude No. 7. Since this piece has many sequences of identical
sustained chords, the DTW is not able to perfectly distinguish between them and
there might be small errors in the cursor position.
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The key takeaway from this test is the impact of pedal notes in score following.
Whenever there are sequences of softly played identical notes, the DT'W makes small
mistakes in the alignment with the synthesized recording because of the similarity
between frames. Visually, these mistakes manifest as lags in the cursor position,

which are particularly noticeable in slow pieces, like Prelude No. 7.

4.2.3 Test Three — Prelude #18 by A. Cortot

In Section 3.2.4, we looked at an example comparing Francois-René Duchéable’s
version of Prelude No. 18 to a 1955 recording of the same piece performed by an
aging Alfred Cortot. It was an example of a typical use case of the interpreta-
tion switcher, where noise, interpretation differences, and performance errors could
influence in the result of the DTW.

These same effects are also present when following the score, since the method
relies on finding frame equivalences between two audio inputs, with the additional
problem of dealing with the possible limitations of score synthesis.

Figure 4.10 shows the warping path over the cost matrix of the comparison
between Cortot’s 1955 recording of Prelude No. 18 and a version synthesized from
the score for this piece. Just like in the alignment with Duchable, it is possible to
see that the optimal path found strays a bit from the diagonal direction, certainly
because of Cortot’s occasional mistakes and unorthodox tempo keeping.

Additionally, two horizontal stretches can be seen between 1000 and 1200.

The reason they appear could be related not only to Cortot’s execution of the end

78



Prelude #7 - Computer vs. A. Cortot

700 Warping path 0.30
600
0.25
]
g 500 9
9 0.20 s
£ 400 2
GEJ 0.15 o
& 300 s
Y
o
200 0.10
100 0.05
% 200 400 600 800 1000 1200

Frame (index)

Figure 4.10: Alignment path over cost matrix of the comparison between A. Cortot’s
1955 recording of Prelude No. 18 and a synthesis of the score for the piece. The
frame equivalence strays from the diagonal path because Cortot makes occasional
mistakes in execution, and has trouble executing the piece’s rhythmically challenging
structures.

of the piece, but also because of the limitations of the libraries that were used to
translate the score from MusicXML to MIDI and to synthesize the .mud file.

Listening to the artificial recording and looking at Figure 4.11, it is possible
to notice that, in the last measures of the piece, both the arpeggiated chord of bar
17 and the trill of bar 18 are not synthesized despite being marked on the score.
This creates slight differences in the chroma features that can influence the resulting
warping path.

Moreover, Cortot holds the last chord of the prelude, as indicated by the
fermata in the last bar. Because a fermata is only an indication that a note should
be held beyond its duration at the discretion of the performer, music21 translates
the notes of the chord as common whole notes, which makes them sound for less
time than in Cortot’s recording.

Figure 4.11 shows the cursor’s obtained and expected position at minute 00:50
of Cortot’s recording, and it is possible to see that score following does not work
perfectly in the last seconds of the piece. This is probably caused by the differences
between Cortot’s recording and the synthetic version that were mentioned earlier,
showing the possible limitations of using synthesis for score following.

Nevertheless, the cursor is able to accompany the totality of the recording

without being farther than a bar away from the correct position, which is impres-
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Figure 4.11: Score with the last two bars of Prelude No. 18. The arpeggiated chord
in the beginning of measure 17 (represented by the vertical squiggly line), the trill in
the start of the 18" bar (noted by the letters ¢r), and the fermata in the last chord
(indicated by the dot and and arc over the notes) are not correctly synthesized in
the artificial recording.

sive considering Cortot’s flexible interpretation of Prelude No. 18. Hearing the
synthesized score, this example also shows that the method used to calculate the
timestamps works well, as there are not any errors when following the synthesized
version, despite the presence of 17- and 20-note tuplets.

This test is representative of the challenges when using the score follower,
as it highlights possible problems when synthesizing the scores using the method
proposed earlier. However, it also shows that the score follower is able to handle
rhythmically challenging structures, even when the performer of the recording being
analyzed cannot.

In the next chapter, we will see the architecture that integrates interpretation
switching and score following in an easy to use web interface, so that both of them
can be used by people studying music and analyzing the playing styles of different

performers.
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Chapter 5

System Architecture

To reach the goal of creating a minimally viable product for performance
analysis, it is not enough to know how the interpretation switcher and score follower
work. It is still necessary to find a way to integrate these two blocks and provide a
friendly user interface to their usage.

Even though both blocks are fundamentally based on a Python implemen-
tation of the DTW, since the score follower relies on Javascript running in a web
browser to render the score and update the cursor, a mean of communication be-
tween these two tools is needed.

In this chapter we will learn how this was implemented, as well as visualize the
full user interface used to control audio playback and navigate between recordings.
We will also see the final outlook of the application, and discuss how it can be

improved.

5.1 Framework

As mentioned briefly in Section 4.1, in order to use OSMD’s tools to render
the scores, the follower has to be included in a web application. Traditionally, web
applications are composed of two parts: the front end, which runs on the browser
and focuses on parts of the website that will be explicitly shown to the user, and
the back end, that runs only on the server side, and that handles all the background

operations necessary for the website to work.
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In the case of this project, the front end renders the score, providing an au-
dio reproduction and navigation system, and updates the cursor during playback.
Meanwhile, the back end is responsible for parsing the MusicXML file, correctly syn-
thesizing the audio based on the score, and finding the frame equivalences between
all recordings.

The back end part of a website also typically handles redirecting HTTP!
requests to the correct pages, many times executing certain functions whenever a
given URL is requested via a GET or POST instruction. With this in mind, web
frameworks [54| having functions that simplify routing requests and other common
web development problems were created for many programming languages.

Since most of the other back end tasks were already implemented in Python,
the natural choice was using a framework in the same language. Even though there
were more sophisticated options [55], the chosen framework for the project was
Flask [56], a very simple to use, minimalist framework.

Creating an application using Flask is easy. It comes equipped with a Flask
class, which is responsible for listening to packets arriving at a TCP? port specified
by the user. Once a request arrives in the assigned port, this class automatically
triggers the function in the server assigned to the URL being requested by the
client. Usually, this function returns an HTML page and the corresponding CSS
and Javascript files to the Flask class, which then forwards them to the client in
the form of an HTTP response.

A detailed description of how routing is done in Flask is beyond the scope
of this project, but can be found in the Flask documentation [56]. Here, it suffices
to know that functions in the server are assigned in code to run whenever certain
URLS are accessed by being wrapped in a Python decorator [57, 56].

Because Flask allows serving complete web pages and running code whenever

these pages are accessed, it is perfect for creating a user interface capable of receiving

'Hypertext Transfer Protocol, or HT'TP, is a communication protocol used to request documents
on the internet [52, 53]. In HTTP, a client (usually a web browser) sends a GET or POST request
to a server in order to, respectively, obtain or send specific information.

2Transfer Control Protocol, or TCP, is the communications protocol which is used by HTTP
to ensure delivery of requested contents [53]. When an HTTP request is made from a client to
a server, a connection between these two machines is established using TCP, which transfers the
information requested by HTTP. TCP uses ports to distinguish specific processes in a client/server.
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the inputs needed for score following and interpretations switching and calculating
chroma features and frame equivalences.

The structure of the web site for this project consists of just two pages: a form
page, where the score, recordings and parameters for audio analysis are provided by
the user, and a playback page, which contains simple audio navigation controls and

the score with the cursor being updated in real time.

5.2 Form page

The form page can be seen in Figures 5.1, 5.2, and 5.3. It is a single HTML
form styled using CSS to separate user input into three different sections: the score
section, where a MusicXML file should be provided, the recordings section, where all
the .wav files of the recordings should be given, and the parameters section, where
the user is able to adjust the parameters used for calculating the chromagrams and

the alignment path.

O <

.ﬁed Demo How does it work?

Set up

Step 1: Score

The first step for performance analysis is finding the score for the piece you want to study! Please insert here a.mx/ or .musicxml/
with the digital music sheet of the song being analyzed.

Selected file: Choose File

= Chopin Prelude Op. 28 No.18.mxI o

Step 2: Recordings

The purpose of studying performers is comparing different interpretations of the same pieces! Insert here the recordings you have
for the score you provided in step one. Make sure to use .wav files!

Selected files: Choose Files

= Chopin Prelude Op. 28 No. 18 A. Cortot 1955 Edited.wav ]
= Chopin Prelude Op. 28 No. 18 F-R. Duchable Edited.wav ]

Figure 5.1: Screenshot of the first part of the form page, showing the input fields
for the recordings and the score. The whole page consists of a single HTML form
styled with CSS.

When the user presses the green button at the bottom of the page (Figure 5.3)
after filling the form, a POST request is sent to the server with the form inputs, and

the following actions are triggered:
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Figure 5.2: Screenshot showing the first part of the parameters section on the form
page, where the chromagram parameters are informed by the user. The window
size is given in milliseconds so that the number is easier to visualize, but an input
verification is made using the recording’s sampling frequency to ensure that the
window contains less samples than the number used in the Fourier transform.

Cosine

Standard

Figure 5.3: Screenshot with the alignment part of the parameter input section. Here
are all the parameters related to the D'TW, including the weights, the distance used,
and the steps allowed. For now, only the standard DTW neighboring scheme, with
the three closest neighbors was implemented.

e the score and recording formats are validated, to make sure they are, respec-

tively, MusicXML and WAVE files;
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e the score is uploaded and then synthesized to .wav format as described in

Chapter 4, and the result is stored in the server;
e the recordings are uploaded and stored in the server;

e the sampling frequency for each recording is extracted to be validated and

stored with the other chromagram parameters;

e the chromagram and alignment parameters are verified, to ensure they are all
valid: all recordings must have the same Fj, the overlap needs to be smaller
than 100%, all parameters must have positive values, and the window size in

samples needs to be smaller than the number of DFT points;
e all pairwise frame equivalences are calculated as described in Chapter 3;

e the file paths for the score and the recordings (human and synthetic), the
validated parameters, and the dictionary containing the frame equivalences
between every pair of recordings, including the synthetic one, are saved in the

server in JSON?3 format.

In this way, all elements necessary for playing the audio while following the
score are put in place and saved in the server. However, the issue that remains is
that the audio navigation system runs in Javascript, which is served alongside the

HTML page and runs only in the user’s browser.

5.3 Interface

The consequence of the need to serve the results of the Python routines to
the navigation web page is that an interface is required to send these files back to
user’s browser. Directly handling them to the user instead of saving them in the
server is not possible, as it would require the browser to access local files in the

user’s computer later.

3Javascript Object Notation, or JSON in short, is a lightweight data interchange format [58]
used on the web. It conveniently stores information in a structure similar to Javascript objects
and Python dictionaries.
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Conveniently for us, Javascript is capable of requesting web pages using its
Fetch API [59]. With it, Javascript is able to make HTTP requests to access com-
plementary information in any server available on the internet. In simple terms this
means that code running in a browser web page can request information from other
websites, which is precisely what is necessary to pass the parameters and song files
to the user’s computer.

Therefore, to serve the JSON with the information required by the navigation
system, the solution is simply to create a new route in the back end, responsible for
sending this data to the user’s browser via an HTTP request. Flask is capable of
using Python’s built-in json module to read the information stored in the server and
pass it on (once again in JSON format) to the requester whenever the correct URL
is accessed.

In this project, a single URL is used to pass on the score and audio file paths,
the chromagram and DTW parameters, and also the frame equivalences. Because
the file paths are later used to fetch the score and audio file in the server — a rather
time consuming task — a possible improvement to the interface that is not included
in this implementation would be dividing this stage into three separate URLs. This
would allow fetching the files and data in parallel [60], which could make the web
page load faster.

5.4 Playback page

In the playback page, the fetch() method from the Fetch API is responsible
for accessing the URL that serves the data and getting the information stored in
the response JSON. This information is then used to create the audio navigation
system, which can be seen in Figure 5.4

After retrieving the file paths stored inside the information .json file, the
playback page loads the synthetic version and each one of the human recordings
using Howler js, a Javascript library for playing audio in the browser.

Howler.js is able to load each audio file into a Howl object, which is then

accessible to the browser via Javascript code. All Howl instances come equipped
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Figure 5.4: Screenshot of the playback page showing the score, the cursor, and the
audio navigation controls. Switching can be performed at any time clicking the radio
button next to the desired recording, and audio navigation can be made both by
clicking in the music sheet and by clicking in the progress bars.

with play(), pause(), and stop() methods*, which can be used to control the playback
of each recording. They also have a seek() method, that can be used without any
arguments to find out the elapsed playback time in seconds, and with a desired time
in seconds argument to go forward or backwards in a playback.

It is important to remember that we are dealing with standard digital audio,
meaning that the original sound waves have been converted to a computer readable
format by taking uniformly spaced samples of the original signal as described in
Section 2.1.1 and in Appendix A. When seek() returns a time in seconds, or uses a
time in seconds as argument, Howler js is internally making the conversion between
seconds and samples using the audio sampling frequency, which normally comes
inside the file’s metadata.

In Figure 5.4, the audio navigation controls are displayed in the gray container
on the left-hand side of the image. The three round buttons control play, pause,

and stop functionalities.

4The difference between pause and stop is that pause allows resuming playback from the same
instant as before, whereas stop aborts playback sets the audio position to instant zero.
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5.4.1 Switching between recordings

The radio buttons below the names of the recordings control which interpre-
tation is being played at the moment. Whenever the user clicks one of these buttons
selecting a different recording, the audio switches between the two interpretations
with the procedure described below.

First the playback currently running is paused, if it is not already. A flag
variable is created to indicate if the the audio needs to be resumed in the new
interpretation after the switch.

Then, using seek() without any arguments, the current time in seconds is
obtained for the audio from where the switch is happening. Because the audio files
are all uniformly sampled at Fy = 1/T}, the recordings were created by taking one
sample at every T seconds from the original sound wave. Hence, for any sample n,
its relation to the time it should be played is t = nTy, which implies n = tF;.

Using the sampling frequency stored in the information .json file, the current
time in seconds is reverted to samples, and then further converted to frames through
integer division by the hop length, which is defined as the number of samples within
each frame, and is calculated from the overlap using Equation 2.5.

The result from this operation is the current frame of the origin audio in the
chromagram. Recall that the DTW provided the frame equivalences between this
recording and the target one, and that this information is also stored in the .json
file.

Using this, the frame in the destination recording that is equivalent to the
one in the origin audio can be discovered. Then, this equivalent frame can be
converted back to seconds using the inverse of the procedure described above: first
the frame is converted to samples by multiplying by the hop length, then the sample
is transformed to a time in seconds by dividing by the sampling frequency.

The result is passed to the seek() method of the Howl corresponding to the
destination recording, which puts it in the correct position. The final step is using
the play() method to resume playback in the new recording, if the flag variable

indicates that the origin audio was playing before the switch.
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5.4.2 Navigating using the progress bars

Next to the radio buttons for selecting the recording, there are white progress
bars that are filled as the recordings are played. They show the progress simultane-
ously in each recording, meaning that they compare the equivalent instants in the
audios to their total duration.

In the Javascript code that runs when the playback page is accessed, there
is a callback that is responsible for updating the progress bars as the audio plays.
The callback function runs at every 10ms, and, for every recording, it finds the time
in seconds (after conversion from frames) that is equivalent to the elapsed time in
the currently selected recording. With the equivalent instants in hand, this function
simply updates the HTML elements of the page using traditional Javascript?®.

The technique used to find the equivalent instants is the same that has been
used in interpretation switching, with the difference that there is no need to pause

one of the recordings, since the audio that is playing does not change.

B <

f;’ed Demo How does it work?

Playback control

Chopin Prelude Op. 28 No. 4 M. Pollini

01:16 02:04

Chopin Prelude Op. 28 No. 4 N. Freire

01:06 01:44

Synthesized Score

01:25 02:03

ONONO)

Figure 5.5: Screenshot of the playback page during audio playback. It is possible
to see that the progress bars fill simultaneously as the audio plays, thanks to the
callback that gets the equivalent times and updates them.

5Dynamically changing a page to create new objects, or changing the style of existing elements,
as is the case here, is a typical use of Javascript. This is made by manipulating the DOM [61],
Javascript’s representation of the objects constituting a web page.
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It is also possible to control the position of audio playback by clicking in the
progress bars, as usual when listening to music on the web. Javascript is capable of
handling information from click events happening on the web page, and, using this,
discover how far the click in a progress bar was from its left bound.

By dividing this value by the total width of the progress bar, we get the
percentage of the audio playback that the user wants to go to. Imagining the width
of the progress bars is 10 pixels, if someone clicks in the bar at a position 3 pixels
away from its beginning, then this means that the desired position for the audio is
at 30% of its total duration.

Having this percentage, it is only a matter of multiplying it by the duration
of the recording corresponding to the bar that was clicked to obtain the desired time
in seconds for this performance. Then, updating the other progress bars, and even
the audio position, if the progress bar that was clicked did not belong to the audio
that was playing, can be done using the same method of obtaining the equivalent

times as before.

5.4.3 Navigating through the score

The progress bars are not the only dynamic part of the playback page. In
this page, the music sheet provided by the user is displayed and followed using the
procedures described in Chapter 4.

The page fetches the path for the score MusicXML in the information .json
file, and OSMD calculates the timestamps using the method seen in Section 4.1.3
as soon as the music sheet is loaded into the page. Using them, score following
is done using a callback responsible for periodically checking if the current song’s
equivalent time in the artificial recording is smaller than the next stored timestamp,
and moving the cursor if not the case.

Another layer of interaction with the music sheet was added by enabling
navigation through the score. When a user clicks a note, the click coordinates in
the page can be transformed in coordinates in the music sheet, as explained in one
of the issues of OSMD’s GitHub repository [62|. Using this and the convenient
GetNearestNote() method from OSMD’s GraphicSheet class, the playback page is

able to return the object corresponding to the note closest to the click.
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With this, in order to scroll the audio to the position of the note, it is only
necessary to ensure that the objects used for the graphical representation of the notes
are stored along with the timestamps during load time. Then, a list of the notes can
be passed on for comparison with this closest note object, and the desired timestamp
can be extracted through its association with the graphical note representation.

To ensure that score following can be resumed after using seek() to go to the
desired time of the correct Howl object, a copy of the original timestamps calculated
before must be kept. In this way, when a user clicks a note that has already passed
in the audio, it is possible to restore the elements that were popped out of the array
that is used to keep track of the cursor position.

This is how navigation through clicking is implemented in the score, but, as
of today, some bugs still seem to occur in the code. For example, sometimes when
clicking a note, the cursor will go to the position corresponding to the note coming
just before the one that was clicked. This could be a consequence of a difference
between the floating point precision of the timestamps and of the time returned
by the seek() method. Since the algorithm for updating the cursor compares two
decimals with different precision, this rounding error could cause small mistakes
when navigating via score.

Also, both with the score and the progress bars, there seems to be a problem
while navigating forward in the audios, specially if this is done without pausing the
audio beforehand. Depending on the instant that is requested, the timestamps array
is not correctly updated, causing the score to scroll to the wrong note. This does
not happen all the time, and because it is a bug that is not easy to reproduce, it was
not possible to find its cause. However, it is probably related to the queuing system
in Javascript and how the callbacks for updating the progress bars and cursor are
scheduled.

Regardless of these problems, the application still presented a satisfactory
performance for its goal of being a minimally viable version of a performance ana-
lyzer. The user interface is simple and friendly, and it allows controlling most of the
algorithm through its parameters. Navigation through the progress bars and the
score is available, even with its problems, and most users should be able to enjoy

the application without much trouble.
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Chapter 6

Conclusion

In this project, we have seen how a web application for performance analysis
in music was developed, and explored in detail the signal processing and information
technology subjects necessary to understand how it worked. In the following, we
will summarize the points of interest seen in this study, and we will detail some of

the possible future perspectives of this work.

6.1 About the developed project

More often than not, music is more about expression and feeling than about
the notes that are written in the score. Regardless of the level of experience, every
musician has their own approach when playing musical pieces, and it is this indi-
vidual way of communicating through music that makes a performer’s work unique.
Because of this, it is common for music students to want to study the styles of dif-
ferent musicians, so that they can learn their expressions and incorporate new tools
in their own set of artistic interpretations of phrases and songs.

Normally, analyzing the performance of many artists is a tedious process that
involves not only finding a correct music sheet for the desired piece, but also listening
to all the versions that must be compared, noting down the parts of interest, and
going back and forth between the different recordings to have a feel of the differences
between interpretations.

Even though there are nowadays digital music sheet readers that can play

scores and navigate through them, there is no solution capable of placing different

92



recordings next to one another and switching between them as the user wishes.
Furthermore, score readers render synthetic versions of the music sheets they receive,
and are incapable of score following real recordings or adding interpretative aspects
to a song.

Having this in mind, this project proposed to create a minimally viable ap-
plication that would allow music students to compare different recordings in a con-
venient and user friendly way, thus filling a feature gap that currently exists with
digital score readers. The idea was to create a user interface where it would be
simultaneously possible to follow a music score and freely switch between different
interpretations of the same work.

Starting from the different representations of a music signal in time, fre-
quency, and in the time-frequency domain, we have seen how to display digital
music in a matrix format containing the evolution of the played notes along time.
Then, using dynamic time warping, we studied how two matrices corresponding
to different recordings could be compared in order to find out the equivalence be-
tween instants in both of them, and proposed heuristics to make this equivalence as
musically meaningful as possible.

With this information in hand, we were capable of developing a method for
freely switching between recordings of the same piece — one of the goals of the
project — simply by resuming playback in the equivalent instant of the recording
that we were switching into. Despite working in most cases, and being robust to
noise and variations in timbre, this method was not foolproof, and in this project we
also saw its limitations related to very large interpretative differences and to silences
present at the end of commercial recordings.

By synthesizing the score similarly to music sheet readers, we were able to
create an artificial recording that could also be aligned with the real performances,
creating a ground truth of what would the piece sound like if there were no interpre-
tative variations whatsoever. Combining this with a Javascript library for rendering
scores, it was possible to calculate the note onsets in this artificial version, and use
this together with DTW to find out the correspondence between the instants of the

real recordings and the notes in the score.
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Once again, this method performed well for the purpose of creating a mini-
mally viable product, but showed its limitations. The library that was used to ren-
der the score, OpenSheetMusicDisplay, does not support mid measure tempo changes
when calculating the timestamps, and grace notes could cause problems in align-
ment since they are interpreted as having zero duration. Moreover, pedal notes seem
to be particularly hard to align using the DTW, and it appears that fermatas and
other notation that may not be correctly synthesized could cause problems in the
following procedure.

Both of these two blocks, the interpretation switcher and the score follower,
were integrated in a web based user interface that is capable of receiving the inputs
necessary for alignment via an HT'ML form. The final application was developed
using the Flask minimalist Python web framework, and the communication between
its front and back end was made by sending carefully written JSON files through
HTTP requests.

All things considered, the goal of creating a minimal working version of an
application for performance analysis was achieved, even though there are limitations
to the techniques that were used. Despite its issues, the system behaves as expected
most of the time, and it performs correctly as a web application for music educa-
tion. Both for students who want to learn how to read music, and for experienced
musicians or music lovers that wish to compare the playing styles of their favorite
artists, the application provides a convenient way to analyze different recordings and

deepen their musical knowledge.

6.2 Next steps

The interface that was presented in the previous chapters is available on a
GitHub repository [63], and is ready to be deployed in a server to be made available
on the internet. This should allow people to begin using the system and gener-
ate some feedback on its current state. Because most of the testing was made on
Chopin’s set of twenty-four preludes, the whole system containing both the inter-
pretation switcher and the score following was baptized as Fred, in a reference to

the Polish composer’s first name, Frédéric.
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Perhaps the most significant weakness of this work is the lack of an objective
evaluation of its performance. All tests were evaluated subjectively, and it would
be good to obtain some sort of numerical measure of the system’s accuracy. To
evaluate score following a possible strategy could be annotating the note onsets on
a set of recordings of different pieces, and then manually annotating the instants
where the cursor hovers over the notes. Because this can be a rather time consuming
strategy, the authors of [14] suggest randomly changing the interval between notes of
annotated pieces in the MAPS [64] dataset, thus creating artificial examples where
the ground truth onset times would be known.

There are some features that could be added to the application to further
enhance user experience. The simplest one is the addition of automatic removal
of trailing silences. As we saw when discussing both the score follower and the
interpretation switcher, the presence of non musical silence can considerably impact
alignment performance, and it could be easily handled by establishing a magnitude
floor below which all samples in the beginning and end of the recording would be
removed.

Another possible feature to be added is part selection. By clicking in different
measures of the score, the user could be capable of looping certain parts of the piece
in order to easily compare interpretations. Right now this requires navigating using
the score or progress bars, and switching between the interpretations at the correct
moments, which can be cumbersome after a while.

In terms of visualization, an interesting possibility could also be showing
the progression of the pieces with animations displaying the warping path over the
cost matrices for each pair of recordings. The idea would be plotting horizontal
and vertical bars that would move along the warping path as the audio progresses,
creating an animation of the alignment. Using this, it would be possible to clearly
see horizontal and vertical patches in the frame equivalences.

Some corrections need to be done as well. As we explained in Chapter 5, there
are bugs related to navigating while clicking on the score and to fast forwarding the
recordings, specially while the playbacks are not paused. For the former, the main
suspect is floating point precision while calculating the timestamps, while for the

latter it might be a good idea to closely examine callbacks and their queuing system.
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Other possible continuations include modifying the method proposed here
in order to obtain better results. In [14], the authors suggest aligning audio to
score by first transcribing the recordings to MIDI format using recurrent neural
networks (RNNs) and then using the DTW to find the equivalences already in the
note domain. They argue that the transcription could be regarded as a learned
feature representation, and be the equivalent of the more traditionally used chroma
features, but with better performance.

An analogous idea to this one would be creating chroma representations for
the scores directly after parsing them with music2l. To do this, we could try to
find the note onsets using a similar procedure to the one used by the front end, and
then, use unit vectors with magnitude equally spread across the chromas present in
each frame as columns of an artificial chromagram. This could avoid the issues with
MIDI synthesis, and also reduce the overall complexity of the system.

Enhancing chroma features is also a possibility. To further improve robust-
ness of chroma features, the authors in [65] propose a different method for extracting
them. Instead of using a filter bank as we have seen here, they suggest using a neural
network trained to find chroma representations of chords. As their ultimate goal
was chord recognition, their model was trained and tested to perform this task, but
this representation could be useful since it seemed to extract clearer chroma content
in each frame.

In [66] the authors propose combining one-dimensional onset features with
traditional chromas to create a modified chromagram with high temporal accuracy.
Based on the fact that attacks on many instruments result in a sudden energy
increase, they suggest dividing the audio signal in pitch inspired subbands, and
then using the peaks in each band as the onset instants for each pitch. Pitches are
then pooled into chromas, similarly to Section 2.2.2, hence creating chroma onset
(CO) features. These are later further modified and combined with the standard
chromagram to produce better results in music synchronization tasks.

An implementation of the chroma onset features can be found in [67, 68|,
where the authors also include a handful of tools for music synchronization that
could be useful for this project, including: strictly monotonical warping path calcu-

lation [3], and multi-scale dynamic time warping [69].
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The first of these two is a modification to the warping path calculation pro-
cedure that forces frame equivalences to be strictly monotonical, prohibiting hori-
zontal stretches. This requires potentially skipping some of the frames of the slower
recording, but nevertheless could provide good results for the system considering
how problematic these patches were in this work.

The second is another variant of the DTW that uses constraint regions calcu-
lated using chromagrams derived using larger windows. Audio features are obtained
for the recordings using larger windows, resulting in chromagrams with less columns.
Then, a warping path is calculated using this coarse resolution, and the result is used
as a constraint region for a DTW performed in a more detailed chromagram con-
structed using a smaller window length. As a consequence, the algorithm becomes
less computationally expensive, which can be very useful for long pieces of music.

Finally, it would be interesting to see if there is any change in performance
when using other signal representations as the basis for feature extraction, or when
using them directly as input to the DTW. To counter the trade off in resolution in
time and frequency, the author of [15] suggests combining time-frequency represen-
tations of different resolutions to create new high-resolution signal depictions that

could be used in different music information retrieval tasks.
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Appendix A

Fourier representation of signals

In Section 2.1 we briefly explained the basic concepts of signal processing
needed to understand the audio features used as input for the interpretation switcher.
Since the focus of Chapter 2.2 was more on explaining the construction of chroma
features and their advantages for audio alignment, rather than on being a refer-
ence for Fourier representation of signals, we only showed the intuitions behind the
important results for the DF'T and STFT, and left out more detailed explanations
while pointing to good references for those that might be interested.

In this appendix, we will go a little further in the reasoning behind these
two representations, starting from the basic modeling of continuous-time signals,
going through the effects of sampling on the spectrum, and finally arriving at the
windowing process and the construction of the STFT. Our goal is to present a
bit more formally the concepts seen before, while still pointing to the references

mentioned earlier for proofs and further details.

A.1 Fourier representations of continuous signals

As explained earlier in Section 2.1.1, signals are nothing more than mathe-
matical functions modeling a physical phenomenon. As a function, a continuous-
time signal x can assume values z(t) at any given real time ¢, like all functions

whose domain is IR. Supposing that a function is periodic!, meaning that there

Intuitively, this is equivalent of saying that the signal repeats itself every T time interval.
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exists some 1" for which z(t) = z(t + T') for any ¢, and also that it respects the
Dirichlet conditions [70]:

e 1 is bounded,
e 1 has a finite number of local maxima and minima in one period,
e 1 has a finite number o discontinuities in one period,

a well-known result of real analysis states that x can always be written in the form

z(t) = al0] + Z alk] cos(kwot) + Z b[k] sin(kwot), (A.1)

o
k=1 k=1

where a[0], alk], and b[k| are coefficients calculated by [70]

T/2

aM:%[Wf@% (A.2)
/2

aM:%[mﬂmemW, (A.3)
T/2

blk] = %/T/Q x(t) sin(kwot)dt, (A.4)

and wy = 27/T is the angular fundamental frequency of the signal, measured in
radians per second.

This is known as the Fourier series (FS) of a function, and it is the origin
of the idea of representing a signal based on its frequency content, rather than on
its temporal characteristics. Just like in the guitar string example of Section 2.1.2,
a signal can be decomposed in its basic frequencies, in the case of the example the
sine waves corresponding to the pure tones whose sum composes the note.

Due to Euler’s formula?, the Fourier series can also be written in the complex

exponential form

w(t) = > X[k]e!, (A.5)
k=—00
with coeflicients
1 T/2 )
X[k == / x(t)e TR0t dt, (A.6)
T J 7/

2eJt = cos(t) + jsin(t)
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The exponential form can be used to derive Fourier representations are not
limited to periodic signals. As demonstrated in |24, 70|, a non periodic signal can
be considered to be a periodic one consisting of replicas of it spaced by zeros, as
long as the interval between these repetitions tends to infinity. This intuition can be
seen in Figure A.1, where it is also possible to observe that extending the separation
between the replicas up to this limit is equivalent to infinitely increasing the period

of the extended signal.
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Figure A.1: Periodic signal used as a replacement for a non periodic one. Starting
from (a), we can see that as the distance between the replicas of the square wave
centered in zero increases, the period gets larger and we get closer to the non periodic
rectangular window shown in (d).

By applying the complex Fourier series to the periodic signal while taking

the limit T — oo, a generic frequency representation defined by

x(t) = % /OO X (jw)e dw, (A.7)
X(jw) = /_OO x(t)e ¥dt (A.8)



and known as the Fourier transform (FT) can be deduced for all signals respecting

the Dirichlet conditions for the transform [24]:
e 1 is absolutely integrable,

e x has a finite number of local maxima, minima, and discontinuities in any

finite interval,
e The size of each discontinuity is finite.

Note that, this time, unlike in the Fourier series, w is continuous and the
representation exists for all frequencies. This happens because, as the period goes
to infinity, wy becomes infinitely small, and thus summing its multiples is in fact

equal to integrating over all possible frequency values.

A.1.1 Relation between duration and bandwidth

The Fourier transform X of a signal x is often called the spectrum of x, and
has many interesting properties. For instance, the width of the spectrum, which
is also known as bandwidth, is inversely related to the time duration of a signal.
Even though it is not simple to analytically define bandwidth or duration for signals
infinite in frequency or time, it is possible to establish a bounding relation between
what is known as the effective value of these two quantities.

Supposing a signal in time = with values z(t), we can calculate the ratio of
the signal’s total energy in a single instant by defining a normalized energy density

(@)

Joe =@

This density can be regarded as a probability density function, since it only

P(t) = (A.9)

assumes positive values and integrates to one, and being so, one can calculate mo-
ments such as mean and variance for the energy distribution of the signal. With
this in mind, the effective time duration T}; of a signal can be defined as the spread

of its energy content in time, which can be seen as the standard deviation of P:

Jo @)

=\ e

(A.10)
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Similarly, in the frequency domain for a signal X with values X (jw), we can

define a normalized energy density spectrum

| X (jw)

P) = X Gu)p

(A.11)

and calculate its effective bandwidth as the spread of P(w)

\/f X G@)P (A.12)

| X (jw)|?

These definitions ensure that having large values of x or X for ¢t or w far from
the origin will increase duration or bandwidth, regardless of the value of the sig-
nal /spectrum and of the side of the plane the value is on, and furthermore can be
adapted to the case of non centered signals [31].

It can be shown that the product T, x B,, < 3 [24, 31|, meaning that even
though a signal can be arbitrarily small in time or frequency, it comes at the price of
having a larger width on the conjugate domain. This is also valid in discrete time,
and explains one of the phenomena intuitively explained in Section 2.1.3. Choosing
smaller time frames implies spreading frequency content over more bins due to the
lower bound of the duration bandwidth product, creating a resolution trade-off that

cannot be avoided.

A.1.2 Modulation and convolution

Another convenient property of the Fourier transform is the relation between
convolution and multiplication in the time and frequency domains. Convolution is
a mathematical operation between two functions that generates a third one through
the sum of the point-wise products of the first input with a mirrored and shifted
version of the second, as shown below for two signals in time, but also applicable to

frequency representations:

(xxy)(t) = /00 z(7T)y(t — 7)dT. (A.13)
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Here the asterisk symbol denotes the convolution operation between two sig-
nals, and the sum of the products is expressed with an integral due to the fact that
each function assumes a continuum of values in time.

As explained in [24, 70|, the Fourier transform of the convolution between
two signals in time is equivalent to the product of their spectra; conversely, the
spectrum of the product between two signals — an operation also called modulation
— is (up to a constant factor) equivalent to the convolution between the Fourier

transforms of both original signals. In other words:

(% y)(t) +——— X (jw)Y (jw), (A.14)
s(By(t) T %(x V) (). (A.15)

The second relation is the reason why windows introduce frequency content
during STFT windowing, as discussed in Section 2.1.3. Because the windowing
process consists of multiplying chunks of the original signal by a window function,
the spectrum for the windowed signal is actually the convolution of the window and
signal spectra. As exemplified in Figure A.2, where the result of the multiplication
of a sine wave by a rectangular window is shown in both domains, if the windowing
function has non negligible high frequency components, the convolution operation
will enlarge the original signal in frequency due to the substantial superposition
between the two spectra, thus introducing undesirable frequency spreading in the

representation.

A.2 Spectrum of a sampled signal

Until now, we only showed the Fourier representations and some of their
properties for continuous-time signals. Yet, as we mentioned throughout Section 2.1,
continuous functions cannot be handled neither in time or in frequency by computer
processors, and so need to be converted into discrete signals through sampling to be
analyzed.

Uniform sampling in the way described in Section 2.1.1 has the effect of

replicating the spectrum of the original continuous-time signal along the frequency
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Figure A.2: Effects in both domains of multiplying a sine wave by a rectangular
window in time. Images (a) to (c) show signals in time, while (d) to (f) show them
in frequency. The spectrum of the sine wave in figure (a) is a Dirac delta, which is
introduced in Section A.2 along with some of its properties.

axis, as can be seen in |24, 26]. This is because the act of selecting uniformly spaced
samples from a signal can be modeled in continuous time as multiplying it by a

sampler signal

p(t) = > 6(t —nTy), (A.16)

where T} is the desired sampling period, and ¢ is the Dirac delta function®, which
is a signal defined as zero everywhere except at the origin, while at the same time
integrating to one over the real line [24, 71].

In frequency, the representation of the sampler signal P is conveniently also

a sequence of shifted Dirac deltas [24, 26], scaled and spaced by wg = 27 /T:

o

P(jw) = ) 2T—7:5<w - kQT—”) (A.17)

k=—oc0

3Technically speaking, the Dirac delta is not a function in the traditional sense, but a generalized
function [71, 72], which is an extension of the classical definition used in mathematical analysis.
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Since convolution is commutative, and since convoluting a signal with a
shifted impulse results in a shifted replica of the signal [24, 26|, it follows that

the spectrum of the continuous-time sampled version of a signal x will be

. I & , 2m
Xs(jw) = T k; X(] (w - ki)), (A.18)
where X is the spectrum of z, therefore showing that uniform sampling in time

creates equally spaced replicas of the original spectrum in frequency.

Original spectrum

=
Amplitude

0 Fs 2Fs 3Fs
Frequency (Hz)

Sampled signal spectrum

UTs

=
Amplitude

% Fs 2F, 3F,

Frequency (Hz)
Figure A.3: Example of the effect of uniform sampling on signal with finite spectrum
while using sampling period respecting the condition for lossless sampling. Image (a)
shows the original spectrum, and (b) the one corresponding to the continuous version
of the sampled signal. For convenience, the frequency axis was scaled to hertz by
dividing by 27, so ws = 27/T; becomes Fy.
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A.2.1 Fourier representations in discrete time

Still, the resulting spectrum Xj is the frequency representation of the con-
tinuous-time sampled version of the original signal x, defined by z5(t) = p(t)z(t).
Even though it has value zero, x is still defined for times t # nT;, and so we need to
go a little further to find the Fourier depiction of a discrete signal x4 corresponding
to the samples of x with values z4[n] = x(nTy).

Similarly to their continuous counterparts, discrete periodic signals can also
be accurately portrayed through a series representation, as demonstrated in [24].
Supposing a discrete signal x, with values zg4[n], and period of N samples, its
discrete-time Fourier series, or DTFS in short, is calculated by

N/2
zaln] = Y Xalk]eHon, (A.19)
k=—N/2
where Qy = 27 /N is a discrete equivalent of the fundamental angular frequency wy,

and where the coefficients X [k| are equal to

N/2
1 :
Xqlk] = v E 1 4[n]e~Ik%on, (A.20)
n=—N/2

For non periodic signals, the same approach used in continuous time of con-
sidering them the limit of periodic versions of themselves when their period is sym-
metrically extended to infinity applies [24], and a signal x4 can be rewritten thanks

to its discrete-time Fourier transform (DTFT) X, in the form
1 " i\ L jQn
zg[n] = By Xa(e™)e*ds, (A.21)
™ —T

where the representation in the frequency domain X4 takes values X,(e/*?), and can
be found through the relation

Xo(e) = ) wgln)e ", (A.22)

n=—oo

In this case, as previously with the continuous Fourier series and transform,

the frequency variable €}y became infinitely small due to the extension of N to
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infinity, and being so, the summation over all N becomes in fact an integral over
continuous {2, given that k{)y can now assume any real value. However, unlike
before, the frequency representation X is calculated through an infinite summation,
thanks to the discrete nature of the signal. This demands the care of guaranteeing
summation convergence, which is why the signals transformed by the DTFT are
usually absolutely summable.

The integral limits in Equation (A.21) come from the fact that, as N goes to
infinity, 20/N/2 tends to 7, and furthermore it is possible to show that the spectrum
calculated through the DTFT is 27 periodic |24, 26]. Because discrete-time sinusoids
are indistinguishable if their frequency differs by multiples of 27* [24], all complex
exponentials in Equation (A.22) separated by more than that will have an equivalent
inside [—m, 7).

Since all the other previously shown properties of the continuous Fourier
transform hold for the DTFT with some minor adjustments [24], we use this to
bridge the spectrum X of the continuous-time sampled version x5 of a signal x and
the DTFT representation X 4(e/®) of a discrete signal .

In order to assure that x4 is the discrete version of x, the relation x4[n| =
x(nTy), with Ty sampling period, must hold. If this is true, then rewriting x, and x

we have that

salin] = % / X (/) d0) (A.23)

must be equal to
1 [~ .
x(nTy) = 2—/ X (jw)e? = dw, (A.24)
™ —0oQ
which can in turn be reformulated using X; as

1 ws /2 )
%(HTS) = % P Xg(jw)ej””Ts <A25>

because the spectrum X consists of periodic repetitions of X. Equations (A.23)

and (A.25) are equal, and so it follows that we must have

Q=Tw (A.26)

4Think of g[n] = sin(n7/2) and h[n] = sin(n57/2); even though their continuous counterparts
are different, in discrete time they are the same due to the samples chosen, because they will have
period N = 4 and samples [0, 1,0, —1].
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with
Xs(jw) g = X(ejﬂ). (A.27)

W=y
Therefore, the spectrum of the discrete version x4 of a continuous-time signal
x, will simply consist of repetitions of the original spectrum spaced by 27. In
comparison to the previous result, for a continuous-time sampled version of z, the
frequency axis was scaled. Previously, higher frequencies were mapped to close to

ws/2, but now since the relation between discrete frequency and continuous frequency

is Q = Tyw, these same frequencies appear close to 7, once that ws = 27/T.

Discrete signal spectrum

1Ts
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o°
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<

0,

0 1 2 3

Frequency (samples™1!)

Figure A.4: Continuation of Figure A.3 showing the spectrum of a discrete version
of the signal in Figure A.3a. To be coherent with previous figures the frequency
axis was normalized by 27 like before with the conversion from radians per second
to hertz.

A.2.2 The Discrete Fourier transform

Having found a frequency representation for discrete signals, one part of the
problem is solved. It is useful to know that digital signals actually have frequency-
domain representations, but the infinite summation and continuous frequency of
the DTFT are still troublesome. As mentioned in Section 2.1.2, we need a Fourier
transform which is discrete in both domains, otherwise it is impossible to perform

signal manipulations in frequency.
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Thankfully for us, there exists a Fourier mapping which is discrete in both
time and frequency. The discrete Fourier transform (DFT), introduced in Sec-
tion 2.1.2, is actually a frequency sampled version of the DTFT, as shown in [26].

A DTFT spectrum X of a discrete signal x can be uniformly sampled between
zero and 27 with N samples through multiplication by a function similar to the one
in Equation (A.16), but in frequency, resulting in a continuous sampled spectrum

X'’ with values

X'(e7) = X (29 i 5(9 - k%) (A.28)

k=—oc0
As suggested in [26], the time-domain version 2’ of this continuous sampled spectrum
can be found by applying the inverse DTFT of Equation (A.21) to X', which gives
1

2[n] = 3 X[k]e? T, (A.29)

3

where the values X[k] = X (e/¥*) are the N samples extracted from the original
spectrum.

On the other hand, by using the convolution property in Equation (A.28), =’
can be rewritten as

2'[n] = % Z zln — Np, (A.30)

since (as in the case of time sampling) the inverse DTFT of the sampler signal gives
a sequence of impulses [26], yielding replicas of = spaced by N samples. Hence, if
the number of frequency samples N is bigger than the length L of x, it is possible
to perfectly reconstruct x just from samples of its DTFT representation, since that,
for 0 <n < N — 1, we have

2m

x[n] = Nm’[n] (A.31)

By substituting 2’ from Equation (A.29) in Equation (A.31), we finally arrive

at the transform pair announced in Section 2.1.2, by writing

z[n] = X [k]ed 7 kn (A.32)
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and noting that, since X [k] = X (eI %*), if we assume the minimum acceptable case

of N = L, then, by using Equation (A.22), we obtain
X[k] = z[n]e I N, (A.33)

The discrete Fourier transform tells us that, in fact, for finite discrete signals
it is possible to find a frequency representation discrete in frequency as well, despite
the fact that the spectrum of a sampled signal is continuous. By truncating the
summation of the DTFT after the last non-zero samples, we are in fact able to
sample the spectrum of the signal without losing any information, which means
that a continuous representation is not needed to reconstruct a discrete finite signal

in time from the frequency domain.

A.2.2.1 From bins to frequencies

With the representation given by the DF'T, frequencies are no longer displayed
in radians per sample or samples™', but in discrete samples called bins. Each bin
k corresponds to a discrete domain angular frequency €2, and consequently also to
a continuous domain one w, and in order to analyze and process signals, we often
need to convert from bins to each of those frequencies and the other way around.

In Section 2.1.2, we gave an intuitive explanation using units for converting a
bin to a frequency in hertz. Here, based on the results of sampling and of the DFT,

we can be more formal by noting that, since X[k] = X (e/¥*), we have that

2m
Q=—Fk A.34
N ( )
which can be translated into a continuous angular frequency using the relation {2 =

wTy, derived from Equations (A.23) and (A.25), resulting in

2
= —kFy, A.
W= (A.35)
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where Fy = 1/T;, as usual. If we convert from angular frequency to frequency by

normalizing by 27, we obtain Equation (2.3), reproduced here for convenience:

kE,

f==

(A.36)

A.2.2.2 Zero padding

The number of frequency bins N is also a subject of interest for us. When
deducing Equation (A.31) we stated that N had to be at least equal to the length
L of the original signal, so that the signal x could be periodically reproduced in x’,
enabling the construction of the DFT.

However, N can be larger than L, meaning that the replicas of x in z’ will
be more spaced in time. As can be seen in Figure A.5, where we show z’ and the

DFT for the length L = 8 signal:

1 n
(——), for 0<n<8
z[n] = 2 (A.37)
0, otherwise,

if we make N larger, the discrete Fourier transform will include more samples of the
continuous spectrum of x, and so it is possible to say that the DTFT of = will be
better approximated by the DFT.

This is called zero padding, and it is a common technique for enhancing the
spectrum readability when using the DFT. Since there are algorithms for calculating
the DFT that are more efficient on signals whose length is a power of two [26], the
standard procedure for using the discrete Fourier transform includes zero padding
as a way to get a few more bins while making sure that the signal size is appropriate
for calculating the frequency representation in the fastest way possible.

There are two interpretations for zero padding and why it enhances our ap-
proximation of the DTFT. The first one is simple, and was already stated here: by
adding a few zeros at the end of the signal, we force the use of more coefficients in
the DF'T, which means more samples of the same spectrum.

The second one comes from the interpretation of the DFT as a midpoint

between the discrete-time Fourier series and the DTFT. If we remember the fact
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Figure A.5: Effect of zero padding on 2z’ and the DFT. Image (a) shows ' if no
zero padding is applied, while (c) shows the padded auxiliary function. (b) and (d)
show the DFT of x in both cases, with the continuous DTFT behind them as the
dashed line. The frequency axis were converted from bins to samples ! to maintain
the units from the previous figures.

that the series is discrete in frequency and consists of a finite number of coefficients,
we can interpret the DE'T as the series for 2/, the signal consisting of periodic replicas
of x. Knowing that the DTFT is constructed by replicating a non periodic signal
over time and extending the interval between the copies to infinity while calculating
the series, it is possible to say that zero padding is nothing more than making x’

approach this limit, thus increasing frequency sampling and better approximating

the continuous spectrum.

120



A.3 Revisiting the STFT

With a deeper knowledge of the frequency representation in hand, we can
revisit the STFT presented in Section 2.1.3 to make precise sense of each one of its
parameters. As stated in Chapter 2, the STFT consists of taking a discrete finite
signal x, such as a .wav file, dividing it in chunks called frames, and applying the
DFT to each of them, yielding a matrix where each element of index (i, j) contains
the magnitude of frequency bin j at time frame .

By cutting up the signal into frames, the first two parameters to lookout
when calculating the STFT show up. As seen in Figure A.2 and briefly reminded
just before, windowing is in fact equivalent to multiplication between a signal and
a window function in the time domain, and since time multiplication becomes con-
volution in frequency, shape and size of a window can in fact enlarge the DF'T of a
single frame.

Size comes into play because of the trade-off between duration and band-
width, which causes small windows in time to have large bandwidths, thus spread-
ing the spectrum of the windowed signal. Shape on the other hand, is important
because, as a rule of thumb, smoother windows in time tend to have smaller lobes in
frequency, diminishing the natural distortion caused by windowing. Both of these
effects can be seen on Figures A.6a and A.6b, respectively.

It is very important to note that these two effects are independent. If a
frame has very few samples, it does not matter how smooth is the window function;
the resulting DFT will be large because of the main window lobe, and convolution
will spread frequency content across bins. Similarly, even if a window is large to
ensure high frequency resolution, if the chosen window function is discontinuous,
there will be lobes with high magnitudes across all the spectrum, and convolution
will introduce more frequency content to the original spectrum of the signal being
windowed.

The third parameter to be accounted for is the number of samples used in
the DFTs. The number of signal samples that will be transformed in each frame
is determined by the window size L, but it is perfectly possible to zero pad the

windowed signal to obtain a larger number of frequency bins.
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Figure A.6: Images showing the effect of window shape and size in frequency. Im-
age (a) portrays how window length L in samples affects the spectrum, while (b)
displays the shape of the spectrum of different windows with size L = 50. Here we
plotted the DTEFT, but the same applies to the DFT since it consists of samples of
the former. Frequency axis converted to samples™! as before.

As we explained before when talking about the DFT, this will increase the
spectrogram readability since the DTFT will be better approximated, but, once
again, this effect is independent from the others. Increasing N will create bins, but
if frequency content is already spread due to bad window shape or size, there is
no large N that will be able to solve the problem. The number of samples must
only be at least larger than the desired frame size, while providing an adequate
approximation to the DTFT spectrum. This can be a bit tricky for our website,
since window size is chosen in milliseconds while N is in samples, but this was a
project decision due to the fact that windows in seconds are easier to size according

to the musical piece being provided.
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Finally, the last parameter to be seen in a bit more detail is overlap. Since
during the windowing process, multiplication by the window function may unde-
sirably scale the signal being analyzed, it is commonplace to overlap some samples
between adjacent frames to ensure amplitude in the time domain is not changed.

In frequency, overlap has the advantage of partially solving the time-frequency
resolution issue. If better resolution is needed in frequency, but without much loss
in the time domain, it is possible to increase frame size while also overlapping more
samples between frames. Larger frames do cause loss of time information because
all samples inside a frame are converted into a single frequency representation, but
overlapping adjacent time frames can compensate for this by duplicating time in-
formation into more than one frame. While this does not solve entirely the problem
because two windows cannot be fully overlapped, it certainly can help prevent loss
due to the trade-off between time and frequency blurring.

These four variables control the source time-frequency representation that
was used for interpretation alignment. Alongside the parameters shown in Sec-
tions 2.2 and 2.3, they are central to ensure correct alignment, and consequently
switching and score following. In this appendix we hope to have helped better un-
derstand how they work, and in this process better justify some of the heuristics
presented in Section 3.2.2. If the subject of Fourier transforms and signal processing

interests the reader, we highly recommend looking at references |24, 26, 70, 31].

123



