
AN ALTERNATIVE WORKFLOW PROPOSAL FOR TV

GRAPHICS GENERATION USING THE ANCILLARY DATA

SPACE ON MEDIA STREAM

Guilherme Dantas Couto

Projeto de Graduação apresentado ao Curso

de Engenharia Eletrônica e de Computação

da Escola Politécnica, Universidade Federal

do Rio de Janeiro, como parte dos requisitos

necessários à obtenção do t́ıtulo de Enge-

nheiro.

Orientador: Eduardo A. B. da Silva

Rio de Janeiro

Agosto de 2023

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

Escola Politécnica - Departamento de Eletrônica e de Computação

Centro de Tecnologia, bloco H, sala H-217, Cidade Universitária

Rio de Janeiro - RJ CEP 21949-900

Este exemplar é de propriedade da Universidade Federal do Rio de Janeiro, que

poderá inclúı-lo em base de dados, armazenar em computador, microfilmar ou adotar

qualquer forma de arquivamento.

É permitida a menção, reprodução parcial ou integral e a transmissão entre bibli-

otecas deste trabalho, sem modificação de seu texto, em qualquer meio que esteja

ou venha a ser fixado, para pesquisa acadêmica, comentários e citações, desde que

sem finalidade comercial e que seja feita a referência bibliográfica completa.

Os conceitos expressos neste trabalho são de responsabilidade do(s) autor(es).

iv

AGRADECIMENTOS

À minha mãe, Josiane, e meu pai, Emilson, pela dedicação, amor e suporte in-

condicional que pavimentaram a estrada trilhada até aqui.

Aos meus irmãos, Henrique e Wallace, pelo aĺıvio cômico, sarcasmo barato e a

doce acidez que permeia nossas relações.

À Olympic Broadcasting Services e, em especial, a Stefano Frattini pela confiança

e oportunidades que inspiraram a elaboração deste projeto.

Aos docentes que marcaram minha passagem pela UFRJ: Professores Luiz Wag-

ner, Paulo Diniz e Eduardo pela devoção ao ensino, sugestões e orientação.

Aos muitos amigos que fiz durante minhas passagens pela TV Globo e aos inte-

grantes da banca examinadora.

Aos bons brasileiros que, assim como eu, acreditam neste páıs e contribúıram

indiretamente com seu suor para a realização desta monografia.

v

RESUMO

Quando se observa o modelo mais comum de produção de mı́dia e televisão,

é posśıvel destacar algumas etapas técnicas fundamentais pelas quais o conteúdo

normalmente é submetido: a captação, a edição, o arquivamento e a distribuição.

Durante a edição — que pode ser realizada ao vivo ou não —, geralmente são so-

brepostas às imagens tarjas, caracteres e outros componentes visuais com intuito de

enriquecer a produção. Em transmissões esportivas ou programas jornaĺısticos, esta

ferramenta pode desempenhar papel central na comunicação com o telespectador.

Entretanto, nos fluxos habituais de trabalho, o grafismo é renderizado diretamente

sobre o material em v́ıdeo. Em outras palavras, elementos e informações estampadas

nas imagens não poderão ser modificados ou removidos nas etapas subsequentes da

cadeia de produção — um aspecto desvantajoso. Este projeto apresenta um modelo

alternativo, explorando uma região de dados auxiliares encapsulados junto ao fluxo

de mı́dia. Para isso, se propõe que um conjunto de metadados seja utilizado para

caracterizar peças gráficas e seu conteúdo, de forma que a renderização possa ser

efetuada de modo mais flex́ıvel ao longo da rede de distribuição. Uma aplicação

prática será apresentada, demonstrando como o novo modelo poderia ser adotado

para a geração śıncrona e automatizada de grafismo em mais de um idioma — o que

pode ser especialmente útil em grandes eventos esportivos internacionais.

Palavras-Chave: TV, grafismo, multiĺıngua, metadados.

vi

ABSTRACT

When observing the most common model of media and television production, it

is possible to highlight some fundamental technical steps in which content typically

has to go through: capture, editing, archiving, and distribution. During the editing

process, whether conducted live or not, overlays such as banners, characters, and

other visual components are often superimposed onto the footage to enhance the

production. In sports broadcasts or news programs, this tool might play a central

role in communicating with the audience. However, in typical workflows, graphics

are directly rendered onto the video material, which may be a disadvantageous

aspect in certain circumstances. In other words, elements and information displayed

onscreen cannot be modified or removed in subsequent stages of the production

chain. This project discusses an alternative model, by exploring a region of auxiliary

data encapsulated within the media stream. To accomplish this, it is proposed

that a set of metadata be used to characterize graphic elements and their content,

allowing the rendering process to be performed in a more flexible manner across the

distribution network. A practical application will be presented, demonstrating how

the novel workflow could be adopted for synchronous and automated generation of

graphics in multiple languages, which can be particularly useful in large scale sports

events.

Key-words: TV, graphics, multi-language, metadata.

vii

ACRONYMS

A/D — Analog to Digital

ANC or ANCI — Ancillary Data

ANSI — American National Standards Institute

API — Application Programming Interface

ASI — Asynchronous Serial Interface

AVC — Advanced Video Coding

BNC — Bayonet Neill-Concelman

CBR — Constant Bit Rate

CC — Closed Captions

CG — Computer Graphics or Character Generator

CRC — Cyclic Redundancy Check

CRT — Cathode Ray Tube

CSS — Cascading Style Sheets

CSV — Comma-separated Values

DAI — Dynamic Ad Insertion

DASH — Dynamic Adaptive Streaming over HTTP

DSK — Downstream Keyer

DTMF — Dual-Tone Multi-Frequency

EAV — End of Active Video

FPGA — Field Programmable Gate Array

GFX — Graphics

GOP — Group of Pictures

GPI — General Purpose Input

GPU — Graphics Processing Unit

GUI — Graphical User Interface

HANC — Horizontal Anciliary Data

HD — High Definition

HEVC — High Efficiency Video Coding

HLS — HTTP Live Streaming

HTML — HyperText Markup Language

viii

HTTP — Hypertext Transfer Protocol

I/O — Input/Output

IEC — International Electrotechnical Commission

IETF — Internet Engineering Task Force

IGMP — Internet Group Management Protocol

IOC — International Olympic Committee

IP — Internet Protocol

ISO — International Organization for Standardization

ITU — International Telecommunication Union

JPEG — Joint Photographic Experts Group

JSON — JavaScript Object Notation

MAM — Media Assets Management

MPEG — Moving Picture Experts Group

MRH — Media Rights Holder

MUX — Multiplex or Multiplexer

MXF — Media Exchange Format

NDI — Network Device Interface

NRZ — Non-Return to Zero

NRZI — Non-Return to Zero Inverted

NTSC — National Television Systems Committee

OBS — Olympic Broadcasting Services or Open Broadcaster Software

OS — Operational System

OTT — Over-The-Top

PAT — Program Association Table

PCM — Pulse Code Modulation

PMT — Program Map Table

PTP — Precision Time Protocol

PTS — Presentation Time Stamp

RGB — Red, Green, Blue

RHB — Rights Holder Broadcaster

RTP — Real-time Transport Protocol

RX — Receiver

ix

SAV — Start of Active Video

SCTE — Society of Cable Telecommunications Engineers

SDI — Serial Digital Interface

SDTV — Standard Definition Television

SMPTE — Society of Motion Picture and Television Engineers

SQL — Structured Query Language

SRT — Secure Reliable Transport

TCP — Transmission Control Protocol

TX — Transmitter

UDP — User Datagram Protocol

UFRJ — Universidade Federal do Rio de Janeiro

UHD — Ultra High Definition

VANC — Vertical Ancillary Data

VBI — Vertical Blanking Interval

VBR — Variable Bit Rate

VOD — Video-On-Demand

VPID — Video Payload Identifier

XML — Extensible Markup Language

x

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization . 4

2 Production Workflow 5

2.1 Broadcast stages . 5

2.1.1 Real-time infrastructure . 6

2.1.2 File-based systems . 7

2.1.3 Transport layer . 8

2.1.4 Overview . 9

2.2 Graphics . 10

2.2.1 Types of graphics . 10

2.2.2 Graphics engine . 11

2.3 Case study . 14

2.3.1 Major multi-feed events . 14

2.3.2 Topology drawbacks . 16

2.3.3 Overview . 19

3 Standards Review 20

3.1 SDI interface . 20

3.1.1 Video components . 22

3.1.2 Data format . 23

3.1.3 SDI evolution . 25

3.1.4 Migration to IP . 26

3.1.5 Ancillary data structure . 28

xi

3.1.6 Overview . 29

3.2 MPEG-2 Transport Stream . 30

3.2.1 Stream structure . 30

3.2.2 Packet composition . 31

3.3 SCTE-35/104 Standards . 32

3.3.1 Splice points and events . 35

3.3.2 Normative schema . 35

3.3.3 Splice commands . 36

3.3.4 Injection principles . 37

3.3.5 Overview . 38

4 Novel Proposal 39

4.1 Introduction . 39

4.2 Engines redefined . 40

4.3 Domain . 42

4.4 Template library . 43

4.5 Notification format . 43

4.5.1 GFX command ID . 44

4.5.2 Standalone mode . 45

4.6 Ancillary manipulators . 46

4.7 Scenarios . 47

4.7.1 Multi-language graphics . 47

4.7.2 Adapted video formats . 50

5 Experimental Implementation 51

5.1 Introduction . 51

5.2 Methodology . 52

5.3 Tools and material . 53

5.3.1 Hardware . 53

5.3.2 TSDuck utilities . 54

5.3.3 NodeCG platform . 54

5.3.4 MongoDB . 55

5.3.5 Open Broadcaster Software 55

xii

5.3.6 FFmpeg . 56

5.4 Environment setup . 56

5.4.1 Relevant aspects . 56

5.4.2 Network . 57

5.4.3 Media preparation . 58

5.4.4 TS encapsulation . 60

5.5 Code development . 62

5.5.1 Bundles architecture . 62

5.5.2 Operational modes . 63

5.5.3 Configuration file . 65

5.5.4 Credentials file . 66

5.6 Results . 66

5.6.1 System organization . 66

5.6.2 Interface . 67

5.6.3 Database entries . 68

5.6.4 Graphics messages . 70

6 Conclusions 74

Bibliography 76

A SCTE-35 adapted XML schema 80

B Cobalt Insertion Overview 82

xiii

List of Figures

1.1 Graphics elements printed on card title 2

1.2 Winner graphics stamped on footage . 3

2.1 Overview of main areas within a traditional media facility 5

2.2 Production gallery overview, highlight to operators 6

2.3 Major technology pillars of production 9

2.4 Illustrative graphics examples . 10

2.5 Virtual graphics examples . 10

2.6 Overlays examples . 11

2.7 Highlight of graphics generation in a gallery 12

2.8 Illustration of linear keying process . 12

2.9 Illustration of data fields mapping . 13

2.10 First stage of distribution at the venue 15

2.11 Distribution from venues to IBC and MRHs 15

2.12 Cropped graphics elements on smartphones 17

2.13 Most TV graphics are not adapted for mobiles 17

2.14 Graphics with defective data, as recorded 18

2.15 Translated graphic overlay from korean broadcaster MBC 19

3.1 Coaxial SDI cable terminated with BNC connector 20

3.2 Color space change and digitizing process of a video source 22

3.3 Serializing process of parallel stream . 23

3.4 Television horizontal line data by SMPTE 24

3.5 Simplified spatial layout of a digital frame 25

3.6 Hypothetical SDI source mapped onto ST 2022 vs ST 2110 flows 27

3.7 Ancillary data packet semantics . 29

xiv

3.8 Illustration of MPEG-TS with two hypothetical services 31

3.9 MPEG-TS packet structure . 32

3.10 Typical advertisement break example 33

3.11 SCTE-35 vs SCTE-104 schematics . 34

3.12 Semantics of splice insert() command 37

4.1 Illustration of separate media essences 39

4.2 Illustration of host engine and ANCI injection system 41

4.3 Illustration of replica engine and ANCI reading system 41

4.4 Illustration of a domain and its resources 42

4.5 Illustration of steps until injection . 45

4.6 Ancillary embedder/de-embedder electronic card 46

4.7 Injection workflow in one of the multilateral feeds 48

4.8 Reception of feeds package at rights holder premises 49

4.9 Proposal of simultaneous graphics generations for distinct channels 50

5.1 Experimental transmission workflow for both feeds 52

5.2 Experimental receiver workflow and dirty feed output 53

5.3 Representation of TS packets encapsulated in IP/UDP flow 57

5.4 Generic illustration of a typical GOP structure 59

5.5 Adopted GOP structure for experimental streams 59

5.6 Stream analysis showing no significant spikes on video bitrate 61

5.7 NodeCG bundles architecture and code organization 62

5.8 Picture showing two stream generators and the GFX recovery system . . . 66

5.9 Graphic interface of the engine, showing control panels and output 67

5.10 Engine triggering an indicator corresponding to the command received . . 68

5.11 Tab showing templates loaded and which one is currently being displayed . 68

5.12 Database entry, accessed directly in the MongoDB platform 69

5.13 Startlist graphic, displayed in widescreen and English 70

5.14 Startlist graphic, displayed in widescreen and Japanese 70

5.15 Startlist graphic, displayed in adapted format for mobiles and Japanese . . 71

5.16 Athlete ID graphic, displayed in widescreen and English 71

5.17 Athlete ID graphic, displayed in widescreen and Japanese 72

xv

5.18 Athlete ID graphic, displayed in adapted format for mobiles and Japanese 72

5.19 Schedule graphic, displayed in widescreen and English 73

5.20 Schedule graphic, displayed in adapted format for mobiles and Japanese . 73

xvi

List of Tables

3.1 Scanning systems formats adapted from SMPTE 274M [1]. 21

3.2 SDI interfaces, formats and historical context. 26

xvii

Chapter 1

Introduction

1.1 Motivation

Back on the early ages of modern mass communication, TV emerged as a ground-

breaking evolution of the radio by delivering not only audio but black and white

pictures to its audience. Despite the novelty, broadcast systems were still quite

complex and primitive, relying entirely on analog technology to produce and deliver

creative content.

Visual experience on television was poor and limited, suffering of a lack of qual-

ity and definition for many years. This might explain why it took a while for the

industry to realize the full potential TV images could offer. One of this underesti-

mated possibilities was the usage of onscreen information and graphics elements to

communicate with the public, which came out later.

First graphics for television had to contemplate several restrictions. Up to 20%

of the screen was considered unusable due to the lack of focus around the screen’s

border, coupled with the fact that different television sets would cut the picture off

at different points. In order to create a simple lettering, large and white printed

characters had to be placed onto a black card, copying techniques seen in cinema.

Credit rolls were made with special devices which used long strips of black material

onto which the letters were stuck and manually rolled. One or more cameras had to

be allocated to record these visual elements in a very archaic manner [2].

1

Figure 1.1: In the early ages, graphics elements had to be printed and filmed.

Technology evolved over the years, expanding the horizons of coverage opportu-

nities and boosting new techniques. Colors were added to transmissions, electronic

devices got more advanced and computers were later being incorporated into the

production chain. Changes happened on the way people would consume TV con-

tent, driving the rise of news and live broadcasting popularity.

The audience’s tolerance and desire for a broader visual language and greater

amounts of onscreen information has also increased. Graphics evolved to the point

where they would play a central communication role. Think of modern broadcasting

of sports events: in many occasions, on-screen elements are the main tool for pointing

scores, winners and statistics. Dedicated teams of designers and operators might be

allocated for building templates and integrating them to complex data feeds.

Another aspect to highlight is the importance of characters for people with any

degree of hearing impairment. According to recent estimates, over 1.5 billion people

globally live with hearing loss [3]. Along with captioning, the resource offers the

basics for comprehending onscreen action, improving the experience of this audience.

Same principle applies for the audience following TV shows at restaurants or similar

public spaces, where the equipment is usually found muted. Brian Douglas said:

“As a director, I always assume that the audience is watching from a noisy bar and

ultimately unable to hear the commentators” [4].

2

Figure 1.2: 1991 Grand Prix of Interlagos, Brazil. Historical race of Aryton Senna,

broadcasted by TV Globo. Winner graphics stamped on footage.

When we look at TV productions today, there is very little that does not require

some amount of reading from the screen [4]. Graphics generation turned more

sophisticated, following the rise of computational power and design tools. Some

aspects, however, were kept untouched from legacy systems. One of these premises

is that most characters generated live are rendered and superimposed directly onto

the background footage. This process is often performed at the initial stages of

the broadcast chain, implying that the material will be “dirty” at every subsequent

step. Once inserted, these visual elements cannot be removed or easily modified,

emphasizing the lack of flexibility of this topology.

The project will propose an alternative method for representing data and visual

elements, turning graphics into a set of metadata to be carried along with the clean

background video content. This give broadcasters more control on how the process of

rendering the art pieces will be performed, allowing also data content to be modified.

Special attention will be paid to live sports events on TV.

The model to be presented applies to both modern and traditional TV production

environments, with internal distribution infrastructure relying mainly on the SDI

video interfaces and its latest versions. No specific equipment or suppliers will be

recommended, although they might get mentioned across the text.

3

A software prototype will be developed for testing purposes, using offline media

files to emulate a transmission. These tests are limited to a partial and controlled

representation of a broadcast environment, simulating the behavior of key devices

indicated in the project. Topics like performance and code optimization are out of

scope. Databases and additional cloud resources employed are generic, not sticking

to any particular technology or protocol. Aspects such as security, access control or

concurrency will not be addressed.

1.2 Organization

Chapter 2 focus on the basics of a TV production workflow, allowing the reader

to understand some key aspects of the proposal and how graphics are generated.

Chapter 3 introduces technical details and specifications of broadcast systems and

protocols used by the industry.

Chapter 4 is dedicated to the novel proposal. The structure of ancillary data

packets and production chain is formulated.

Chapter 5 describes the software simulation, giving a better understanding of the

system functionality.

Chapter 6 presents the conclusions and proposals for future works.

4

Chapter 2

Production Workflow

2.1 Broadcast stages

Before jumping into the actual graphics generation workflow, some aspects of

the underlying technical infrastructure of a broadcast network must be highlighted,

specially how signals are carried throughout the facilities. In general, media can be

generated, processed and moved across three main areas: a real-time infrastructure,

file-based systems and, finally, a transport & distribution layer. An intermediary

routing stage interconnects these environments, as illustrated in figure 2.1.

FILE-BASED

SYSTEMS

REAL-TIME

INFRASTRUCTURE

PRODUCTION

CONTROL ROOM

TRANSPORT

LAYER

ENCODING / DECODING ENCODING / DECODING

STUDIOS

OR VENUE

BASEBAND

VIDEO ROUTING

MEDIA

ROUTING

NON-LINEAR

EDITING SUITE

INGEST PLAYOUT

MEDIA ASSET

MANAGEMENT

MASTER

CONTROL ROOM

SATELLITE TERRESTRIAL FIBER WEB VOD

VIDEO

SERVER

Figure 2.1: Overview of main areas within a traditional media facility.

5

2.1.1 Real-time infrastructure

Within a professional broadcast complex, the real-time infrastructure is the base

for transmission of uncompressed, unencrypted digital audio and video signals.

These flows have particular requirements when it comes to quality, performance,

latency and tolerance for outages.

For decades, the real-time infrastructure has been relying on the SDI interface,

created back in the late 80’s. It uses coaxial cabling to deliver signals in a point-

to-point, one-way direction. With the evolution of picture formats and higher res-

olutions, SDI standards have been updated over the time to accommodate the in-

creasing bandwidths, but are rapidly becoming legacy and giving space to modern

IP-based interfaces. Most broadcasters are currently operating hybrid systems, with

characteristics inherited from the SDI era — as detailed on chapter 3.

Going back to the production stages, one of the most important steps in the

workflow is capturing the action: either happening in a studio or a venue. These

sites are connected to a production control room — a gallery where several input and

output feeds are exchanged through the real-time infrastructure, as shown below.

Figure 2.2: Production gallery. Highlight to graphics operator (first row), assistant,

vision mixer and TV director in the back.

6

The control room is the heart of production, specially when live content is being

aired. Material is edited and monitored on-the-fly by a set of special broadcast

equipment. The vision mixer is used for cutting between many different sources

such as cameras, servers and external feeds, creating the main video feed of the

show. Additional effects may be added — including graphics integrated with rich

data streams.

The output signal of a control room, usually known as the Program Feed (PGM),

is routed through the real-time distribution infrastructure for the next step in pro-

duction chain, which can be a master control room, a recording server or a encoder

for transmission. Notice that this video feed usually contain graphics superimposed

to the images, being sometimes referred to as the dirty feed.

2.1.2 File-based systems

In a not-so-recent past, media management inside a broadcast center used to be

entirely dependent on the recording of video tapes and discs. With the evolution

of technology and larger storage capacity, this topology has been suppressed and

shifted to modern file-based systems. This digital platform serves as a hub for

content ingestion and distribution across the production pipeline, often sorted in

centralized databases by Media Asset Management tools (MAM).

Within this workflow, media is shared as files over the traditional IT network,

easily carried in data packets throughout multiple servers — boosting efficiency.

Inside editing suites, for example, previously recorded footage can be captured,

reviewed, and treated by a wide range of software tools. Graphics may also be

inserted at this stage, mixed to the video. The output is usually a new rendered file

ingested back into the storage servers.

Material may be originated from many different sources, including external record-

ings, satellite receivers or any other feed routed through the traditional real-time

contribution infrastructure. In that case, hardware and software tools serve a com-

patibility layer, integrating media carried over electro-optical interfaces into the

file-base domain and vice-versa.

7

Ingested media is usually transcoded to a common file format, in accordance

to broadcast parameters set by the station, assuring proper interoperability amid

equipment. Codecs and containers may differ greatly and the urge for smoothest

workflows has lead the invention of formats to promote efficiency [5].

Back in the 1990s, engineers representing a wide number of users and manufactur-

ers united to develop an open file format to facilitate the interchange of audio, video,

and associated metadata within file-based workflows. This initiative eventually led

to development of the SMPTE-approved Media Exchange Format, in 2004 [6].

When initially designed, MXF had a number of fundamental design requirements:

it had to be open, standardized and compression-format independent. Most of

all: simple and flexible, ideally applicable to a large variety of workflows, carrying

faithfully metadata and media essences throughout the life cycle of a program, movie

or clip [6]. De facto, it became one of the most popular formats for media assets.

2.1.3 Transport layer

Once material has been treated and properly edited — in a control room or editing

station —, next natural step is preparing it for transmission, either to another

broadcast center, an affiliate or the final audience. Ways of distributing feeds may

involve usage of fiber, satellite, microwave or internet links.

Media to be transferred is normally compressed in an efficient way, bearing in

mind possible bandwidth restrictions. This process is usually performed by FPGA-

based hardware, in conformity with well established specifications. Common video

compression standards adopted by the broadcast industry are H.264 (AVC), H.265

(HEVC) and, lately, JPEG XS.

Along with the video, audio and any additional metadata must be finally encoded.

A container encapsulates elementary streams in a digital structure, applying proper

synchronization patterns and error correction codes to segmented data. This ensures

a certain degree of robustness and reliability, specially when the communication

channel carrying the stream is unstable or degraded.

8

One of the most popular containers adopted is the MPEG Transport Stream

(MPEG-TS), carried over an ASI interface, IP ASI, or TCP/UDP. Chapter 3 will

present the basics of the standard, focusing on its inner structure. Other distribu-

tion protocols may include a SRT link on open internet, MPEG-DASH or HLS for

streaming platforms.

On receiving side, each sub-streams should be unwrapped into their audio, video

and data elements. Processing is often performed to each essence independently, and

content is later reassembled and synchronized based on timing stamps sent along

with the media.

2.1.4 Overview

As demonstrated, the real-time infrastructure, file-based and transport systems

form the technical pillars supporting any regular media production. Some broadcast

business models may be content-oriented or constrained to particular technologies,

demanding more from one of these platforms than the others.

As this work will be fundamentally focused on live sports productions, emphasis

will be given to aspects of the traffic between real-time and transport infrastructures.

These processes are supported by dedicated broadcast hardware and software, as

illustrated below.

FILE-BASED

SYSTEMS

REAL-TIME

INFRASTRUCTURE

TRANSPORT

LAYER

SOFTWARE

HARDWARE

ingest

playout

Figure 2.3: Major technology pillars of production.

9

2.2 Graphics

2.2.1 Types of graphics

First aspect to observe in the graphics production workflow is the difference be-

tween their types and main purposes. They are often generated in different ways,

despite sharing many elements and visual characteristics. Three basic categories can

be mentioned: illustrative graphics, virtual enhancements and overlays.

• Illustrative Graphics — Created by designers and animators based on edi-

torial requests, usually covering specific needs. May include static or dynamic

backgrounds, logos, maps, introduction clips, promotional material and simi-

lar. Are often rendered in advance by an editing station, recorded, and later

displayed on over-the-shoulder screens at the studio or on-air.

Figure 2.4: Illustrative graphics examples. Tokyo 2020 coverage, TV Globo.

• Virtual Enhancements — These compositions are directly associated to

specific camera shots, usually integrated with tracking systems. A 3D mapping

of the scene allows the graphics to follow camera movements, creating an

immersive perspective. Very common at sports transmissions.

Figure 2.5: Virtual graphics examples. Tokyo 2020 and Rio 2016, IOC/OBS.

10

• Overlays — Also called text graphics [4], the main purpose is transmitting

information. May contain 2D or 3D visual elements associated with data

content. They are superimposed to background image and some examples

includes: scoreboards, lower-thirds with names, crawls and results graphics.

Figure 2.6: Overlays examples. Beijing 2008 and Tokyo 2020, IOC/OBS.

This project will be fundamentally focusing on graphics overlays, specifically those

generated live in a control room. An overview of the process will be presented below.

2.2.2 Graphics engine

Character Generators (CG’s) are responsible for creating the animated text and

graphics content to be mixed onto the footage. They can be hardware or software

based, but this distinction is becoming less and less obvious since all modern graphics

engines are build on top of computerized platforms.

Hardware character generators, such those found in any regular control room,

encode the visual composition into a high-quality video signal with the assistance

of interface cards. Originally, these signals were not capable of carrying opacity in-

formation along with luminance and crominance components. In order to overcome

this limitation, the engine traditionally supplies a secondary output with the alpha

channel — a gray-scale alike mask indicating transparency levels.

Both CG outputs, fill and key are delivered to a Downstream Keyer (DSK), the

system that finally blends the graphics to the background video, usually through a

linear operation. Figures 2.7 and 2.8 exemplifies the process. The keyer may also

be incorporated in the vision mixer.

11

VISION

MIXER

AUDIO

MIXER

GRAPHICS

ENGINE

FILL

KEY

STUDIOS OR VENUE PRODUCTION CONTROL ROOM

MUXPGM

PGM MUXDSK

OUT

OUT

PGM

CLEAN

PGM

DIRTY

AUDIO SOURCE

GFX DATA

GFX TEMPLATE

PLAYOUT

VIDEO FEEDS

CAMERAS

TX

DATA SOURCE

Figure 2.7: Highlight of graphics generation in a gallery for linear TV.

BKG

FILL

KEY

DSK

OUT

ON

OFF

Figure 2.8: Illustration of linear keying process.

Virtually, any data source can be interfaced with the engine, either through serial

ports or the network. This information can be used to populate the templates and

may come from web API’s, databases, timers, sensors, scoring devices, among others.

Common delivery formats for data are CSV, JSON or XML files. The graphics

application is built with the appropriate formulas to map those into a schematic and

the final rendered message, as shown in figure 2.9.

12

$picto

$discipline

$event

$flag1 $team1 $w1 $l1 R

$event_unit W L

$flag2 $team2 $w2 $l2 Y

message

data schema

Template_id = “07-B-2”

Figure 2.9: Illustration of data fields being mapped into a graphic template.

Another aspect to highlight is the capacity graphics assets may have of accepting

commands carried in a control channel. These are scripted instructions for perform-

ing certain tasks, usually in and out animations, but can include other sophisticated

functions.

The system can run with a certain degree of automation, dispatching commands

and animations when triggered externally (through network, GPI, etc) or manually.

An operator is usually supervising and properly inserting the arts when commanded

by the director, following on-screen action and the desired storytelling. Some tem-

plate fields may also require manual typing or a few corrections before going on-air.

One of the trending technologies in broadcasting is the usage of web-based ap-

plications for graphics rendering. Versatile and sophisticated packages can be build

on top of HTML5, CSS and JavaScript — tools easily interpreted by any browser.

Controlling can be performed in a page with web-sockets and plenty of tools can

be used to overlay the content onto the video. This sort of system is becoming

extremely popular in streaming platforms.

13

2.3 Case study

2.3.1 Major multi-feed events

Consider now the scenario of an international transmission event — as theOlympic

Games or the Football World Cup. Given its size and operational complexity,

these sports competitions emerge as exceptional study objects in the context of

this project. Deliberations to be made here can later be extended to similar or less

intricate broadcast productions.

Large scale events like these usually count with the figure of a Host Broadcaster —

an organization responsible for capturing, producing and distributing high quality

audiovisual content to Media Rights Holders (MRHs) around the world. Without

this entity, each network interested in broadcasting such event would have to mobi-

lize its own resources for the transmission — which would not be viable.

These competitions usually take place at multiple fields-of-play, geographically

distributed in a region of the world. The most common operational agreement

usually states that the Host Broadcaster must prepare a local broadcast infrastruc-

ture at each venue, in order to guarantee the best coverage for the global audience.

Hundreds of technological resources are deployed and usually operated at the local

production unit, where are also concentrated the signals for transmission.

The main goal of the local production unit is generating the international program,

also called multi-lateral feed — ready to be distributed to broadcasters. Due to its

nature, this feed usually is dirty with graphics, fed by real-time data coming from

the-field-of play. Content is commonly rendered in English — with the intention of

making it as much universal as possible.

Figure 2.10 exemplifies the process. First stage of the transmission chain is a local

distribution of the dirty feed to rights holders with presence at the venue. This is

usually the case when there is a particular interest of a network on specific events,

specially when they have intention of enriching their transmission with unilateral

contributions — exclusive cameras or other feeds of that broadcaster.

14

LOCAL

PRODUCTION

UNIT DIRTY

FEED

VENUE BROADCAST COMPOUND TRANSMISSION

DATA

SOURCES

HOST

CAMERAS

HOST

CAMERAS

UNILATERAL

CAMERAS

UNILATERAL

CAMERAS

MRH

PRODUCTION

UNIT

ROUTING

INTERNATIONAL

BROADCAST

CENTRE

ROUTING
MRH

FACILITIESUNIL.

FEED

PGM

Figure 2.10: First stage of distribution at the venue.

Next step of the process consists of carrying the multi-lateral signals to a central

facility, which acts like a hub where further processing will take place. At the

International Broadcast Center (IBC), the feed of all competition venues is routed

and distributed across several systems attending many different purposes, including

digital archiving.

SATSAT

SRTSRT

R
O

U
T

IN
G F
E

E
D

S

P
A

C
K

A
G

E

INTERNATIONAL BROADCAST CENTRE DISTRIBUTION

ENCODERS

MRH FACILITIES #1DIRTY FEED #1DIRTY FEED #1

DIRTY FEED #2DIRTY FEED #2

DIRTY FEED #3DIRTY FEED #3

DIRTY FEED #4DIRTY FEED #4

DIRTY FEED #NDIRTY FEED #N

 . . .

CONTRIBUTION

ARCHIVE

MRH FACILITIES #3

MRH FACILITIES #2

MRH FACILITIES #4

MRH FACILITIES #N

 . . .

MRH

FIBER

Figure 2.11: Distribution from venues to IBC and MRHs.

Vast majority of right holders chooses to have presence at the IBC, where is

possible to have direct access to all multi-lateral feeds. They can build and operate

their own smaller broadcast infrastructure, mainly to carry content from the IBC

to their headquarters in the way they might judge appropriate. Networks with no

presence at the IBC may still have access to feeds through fiber or satellite, usually

made available at points of presence spread across the globe.

15

Once material is under MRHs domains, is up to them to perform the local dis-

tribution on their platforms. In the past, traditional TV was the major (or some

times, the only) distribution channel of these contents. Transmissions were exclu-

sively planned for this format, which used to dictate all major technical and editorial

aspects. This scenario is drastically shifting with the consolidation of mobiles and

other devices for media consumption.

2.3.2 Topology drawbacks

As detailed in previous section, the distribution chain of such events works from

one end to another with the dirty feed, composed of audio and video essences in sync

to each-other. Both can be processed separately by their own specialized broadcast

systems and tools, but later regrouped. Observe that graphics are directly mixed in

the program feed, and, therefore, follows the video path across the network.

A preliminary reflection can be made on this topic: evaluating a graphic and

the associated background video content, it becomes clear that they have distinct

natures, despite the visual appeal. Graphics are digitally build, made of static or

dynamic elements and gradients that can easily make use of the entire color palette.

On the other hand, the image of a camera, for example, is captured with organic

movements and may have a slightly restricted luminance and crominance ranges.

Most of video codecs currently in use are optimized to explore characteristics and

redundancies found on camera footage. This means that a codec may perform poorly

with graphics components, resulting in digital artifacts or distortions when the video

content is compressed — which certainly will happen at a certain point, possibly

more than once. This drawback gets in evidence during the archiving process, when

feeds have to be transcoded and stored in limited-size media.

Another negative aspect to highlight had already been mentioned, which is the

fact that archived and distributed material will be indefinitely dirty with rendered

graphics elements. In several occasions, access to clean video content is highly

desired, given the flexibility it admits for usage in novel applications.

16

Figure 2.12 exemplifies such process, showing content originally broadcasted being

adapted to social media posts, consumed in smartphones. Images displayed on

TV usually have an aspect ratio (proportion between its width to its height) of

16:9. In contrast, mobile devices may operate with all sorts of screen sizes and

proportions, either in portrait or landscape modes. In order to adapt to 4:5 aspect of

the publication, the original video material had to be cropped, leading to unreadable

and dysfunctional graphics on-screen.

Figure 2.12: Cropped graphic elements on smartphones. Images from IOC/OBS.

Figure 2.13: Most TV graphics are not adapted for mobiles. Fonts may look small and

elements covered by user’s hand. Image from Pyeongchang 2018, IOC/OBS.

17

Now consider the scenario of some wrong data being incorrectly inserted on a

graphics template and going on-air, either because of system faults or inadvertent

human action. In the case of a sports competition, in which precision with names,

timing and numeric values are critical, the mistake might have a considerable impact

on the audience. Besides, it will be inadequately stamped in recorded material,

unless a non-linear video edition is later performed to amend or remove the content.

Figure 2.14: Graphics with defective data, as recorded. Pyeongchang 2018, IOC/OBS.

Previous example emphasizes another major deficiency: it is not possible to re-

process or rebuild graphics templates and contents on-the-fly over the distribution

path. Back to large events scenario, imagine that rights holders are willing to offer

translated graphics for their audiences. Current alternatives to make this process

viable are costly and scarce, often involving access to clean-feeds and a prohibitive

replication of the graphics infrastructure for each desired new language.

A solution adopted by some broadcasters to overcome this limitation consists

of superimposing translated graphics onto the dirty feed, generally using a similar

visual package. An operator has to manually dispatch these new messages every

time a graphic is displayed. The delay of this non-automated action is quite visible

and the result prone to errors.

18

TIME

ORIGINAL GRAPHICS

COVERED WITH LOCALLY

GENERATED VERSION,

ENTIRELY OPAQUE.

GRAPHICS IS INSERTED

IN THE MAIN FEED FOR

INTERNATIONAL

DISTRIBUTION.

Figure 2.15: Translated graphic overlay from korean broadcaster MBC.

2.3.3 Overview

Above mentioned disadvantages could be mitigated or solved avoiding overlays to

be directly rendered onto video essence. Instead, if graphics could be represented as

a set of raw metadata, one potential solution would be carrying these information

across the distribution path for subsequent reprocessing in a flexible manner. It is

essential that this additional metadata flow is synchronized with audio and video.

A feasible way of guaranteeing integrity and synchronicity of this data is encapsu-

lating it directly with media tracks, to be transported within digital interfaces. This

is when the ancillary data space comes up as a plausible alternative to be considered,

well established and popular in the industry. Next sections are going to dive into

details of ancillary data carriage, focusing on how it relates with broadcast systems

and protocols currently in use.

19

Chapter 3

Standards Review

3.1 SDI interface

The Serial Digital Interface is a professional-grade family of specifications for

audio, video and data transmission over coaxial cables or fiber. Created by the

SMPTE back on the late 80’s, it marked a revolutionary transition from analog to

digital era. SDI has a point-to-point topology, used to connect all sorts of broadcast

equipment such as cameras, routers, playouts, video mixers, processors, encoders,

among others.

Figure 3.1: Coaxial SDI cable terminated with BNC connector.

Carrying uncompressed base-band video, SDI has proven to be incredibly reliable,

being widely adopted and upgraded over the years, embracing the modernization

of picture formats and ever increasing bandwidths. First large technology jump

occurred in the transition from SD to HD, with transfer-rates multiplied by five.

20

At later stages, support for progressive scan modes have been introduced and, ulti-

mately, UHD formats are pushing the standards to the edge.

One important aspect to observe is the fact that even the most modern updates

of SDI kept legacy attributes from previous releases, given the industry needs for

backwards compatibility. In fact, multiple features present in the standard are

actually inherited from analog television times, as will become clearer later on.

For the purpose of summarizing its architecture, next sections are going to focus

on key elements of the HD-SDI specification, as defined by SMPTE ST-292 [7]. This

is an interface with nominal rate up to 1.5 Gbps and support for several video source

formats, including popular high definition television systems such those referenced

in ANSI/SMPTE 274M [1] and presented below.

Table 3.1: Scanning systems formats adapted from SMPTE 274M [1].

System

Nomenclature

Active / total

samples

per line

Active / total

lines

per frame

Frame

rate

(Hz)

Interface

sampling

frequency

(MHz)

1 1920×1080/60i 1920 / 2200 1080 / 1125 30 74.25

2 1920×1080/59.94i 1920 / 2200 1080 / 1125 30
1.001

74.25
1.001

3 1920×1080/50i 1920 / 2640 1080 / 1125 25 74.25

4 1920×1080/30p 1920 / 2200 1080 / 1125 30 74.25

5 1920×1080/29.97p 1920 / 2200 1080 / 1125 30
1.001

74.25
1.001

6 1920×1080/25p 1920 / 2640 1080 / 1125 25 74.25

7 1920×1080/24p 1920 / 2750 1080 / 1125 24 74.25

8 1920×1080/23.98p 1920 / 2750 1080 / 1125 24
1.001

74.25
1.001

Letter “i” in system nomenclature indicates an interlaced format, while letter “p”

stands for progressive scan mode. The factor 1.001 was kept as a legacy from NTSC

system, which required this adjustment to match analog audio and video carriers.

21

Source format shown on first line has the highest bandwidth consumption, and

therefore will be used to illustrate next sections. A 1920x1080/60i system has video

resolution of 1920 horizontal samples and 1080 active lines, aspect ratio of 16:9,

square pixels, interlaced scan and frame rate of 30 Hz.

Not only aspects of the data structure are detailed by the standard, but also

opto-electrical parameters for signal exchange, such as peak-to-peak amplitudes and

jitter — which are not going to be covered here. The basics of inner video structure

and the serializing process are demonstrated below.

3.1.1 Video components

Imagine a video source, like a camera, generating its gamma-corrected components

red, green and blue (represented as R′ G′ B′), each occupying a separate transmission

channel. Despite the simplicity, this color representation is not the most efficient in

terms of bandwidth optimization, often being replaced by an alternative professional

method.

Due the fact that the human vision is more sensitive to changes in brightness than

to changes in color, the original video components can be derived into luminance

and crominance portions, and distinct transmission rates for each can be adopted.

The new color space is defined by a mathematical coordinate transformation, as

depicted in figure 3.2.

Linear

Matrix

𝑅′

𝐺′

𝐵′

𝑌′

𝑃𝐵
′

𝑃𝑅
′

A/D

A/D Mux

37.125 MHz

A/D

74.25 MHzFiltering

10 Bits

148.5 MHz

Parallel

𝐶𝐵
′ 𝑌′ 𝐶𝑅

′ 𝑌′

RGB

Source

Figure 3.2: Color-space change and digitizing process of a source. Adapted from [8].

22

By having one full bandwidth luminance channel (Y′) to represent brightness and

details of the signal, the two other color-difference components (P′
B and P′

R) can be

limited to about half the luma channel bandwidth and still provide sufficient color

information [8] — a process referred to as chroma subsampling.

Luminance and crominance components are then filtered, sampled and digitized,

respecting parameters detailed by the SDI normative. For 1920x1080/60i system,

luma is sampled at 74.25 MHz and crominance at half the rate, 37.125 MHz, resulting

in Y′, C′
B and C′

R channels. Each word has a 10-bit resolution and gets multiplexed

in a parallel stream of 148.5 Mwords/s.

Data enters a coprocessor, which may insert ancillary data at designated portions

of stream not used by the active video. Then, a cyclic error checking mechanism adds

another set of information for each video line and, finally, the signal is serialized for

transmission. The channel coding ensures that there are sufficient edges for reliable

clock recovery and scrambling minimize low frequency content. The SDI output has

NRZI formatting and a total of 1.485 Gbps for this source format.

Coprocessor

10 Bits

148.5 MHz

Parallel

𝐶𝐵
′ 𝑌′ 𝐶𝑅

′ 𝑌′

Ancillary

Data

CRC

Shift

Register

NRZ

1.485 GHz

Encoder

Scrambler

LOAD

CLOCK

÷ 10

NRZI

1.485

Gbps
CLOCK

SDI

OUTPUT

Figure 3.3: Serializing process of parallel stream. Adapted from [8].

3.1.2 Data format

In accordance to the SMPTE specifications, each video line should be structurally

divided into four areas: Start of Active Video (SAV), End of Active Video (EAV),

Digital Line Blanking and Digital Active Line.

23

DIGITAL LINE

BLANKING

E
A

V
 +

 L
N

 +
 C

R
C

S
A

V

DIGITAL ACTIVE LINE

1
0

-B
IT

S
 W

O
R

D

TOTAL SAMPLES PER LINE

Figure 3.4: Television horizontal line data by SMPTE (not in scale). Adapted from [8].

• EAV — Space reserved for synchronization and other special words, including

a line number and error checking. As the name suggests, it indicates the end

of active picture region and has a total of 16 words for this source format.

• Digital Line Blanking — Back to the analog TV period, image was built

on CRT displays by scanning an electron beam from left to right across the

screen. An interval was needed to move the beam for the next line to raster,

originating this legacy blank region.

• SAV — Area that also contains reserved synchronization packets used to

demarcate the start of the digital active line. Composed of 8 words.

• Active Picture — Space for the actual transmission of luminance and cromi-

nance code-words. In a high-definition video, the total 1920 horizontal pixels

are translated into 1920 samples of luminance and 1920 samples of crominance

(C′
B + C′

R), a total of 3840 words.

The standard for the 1920x1080/60i format specifies that a total of 1125 lines as

described above should be present to form the signal. The additional lines form

another blanking region over the active picture, as shown in figure 3.5. Another

aspect inherited from analog era, this interval was necessary to accommodate the

slow return of the electron beam from the bottom to the top of CRT screens. In a

digital domain, both blanking intervals form a non-picture area and can be used for

transmitting supplementary data. These regions are denominated as the horizontal

ancillary data space (HANC) and the vertical ancillary data space (VANC).

24

ACTIVE

PICTURE

T
O

T
A

L
 L

IN
E

S
 P

E
R

 F
R

A
M

E

E
A

V

S
A

V

HANC

VANC

TOTAL SAMPLES PER LINE

Figure 3.5: Simplified spatial layout of a digital frame (not in scale). Adapted from [8].

3.1.3 SDI evolution

In order to support higher resolutions, new color spaces and frame rates, SDI

has been adapted to meet the needs of the industry and fast-advancing consumer

technology. Moving to progressive 1080p video meant a doubling of the bit rate

from 1.485 Gbps to 2.97 Gbps, for example. Back then, chipsets and interface

specifications were not available to achieve distribution over a single link of such

data rates.

To address these limitations, a standard was released in 2002 admitting transport

of a 1080p60 video signal over two HD-SDI links [9]. By 2006, electronics had

improved enough in general, allowing a single cable to reliably deliver a 2.97 Gbps

payload — originating the 3G-SDI normative. Formats continued to mature and

SMPTE released their ST-2081 suite of standards to ease progression to higher

frame rates, making available 6G-SDI and carriage in tree versions: over single link,

dual links, and quad links. Lastly, 12G-SDI was released in 2015, smoothing delivery

of 4K signals over a single cable.

25

A summary of above mentioned standards is presented below. They all are capable

of supporting seamless carriage of ancillary data within their interfaces.

Table 3.2: SDI interfaces, formats and historical context.

Nomenclature Standard Video Resolution Bitrate Year

HD-SDI SMPTE 292M 1080i60 1.485 Gbps 1998

Dual Link

HD-SDI
SMPTE 372M 1080p60 2.970 Gbps 2002

3G-SDI SMPTE 424M 1080p60 2.970 Gbps 2006

6G-SDI SMPTE ST-2081 2160p30 5.940 Gbps 2015

12G-SDI SMPTE ST-2082 2160p60 11.88 Gbps 2015

3.1.4 Migration to IP

The need for increased bandwidth for transmission of ultra high definition content,

better connectivity, combined with distribution of content on growing over-the-top

platforms is simply outweighing the capabilities of SDI. As a consequence, there is

a fast ongoing process of shifting all real-time distribution to IP-based networks.

Most media facilities are currently operating hybrid systems.

These networks can run on the traditional IT ecosystems, taking advantage of

internet protocols that may provide agility and flexibility for broadcasters. In terms

of infrastructure, usage of IP routers and switches, for example, allows multiple

bidirectional flows to be transported over a reduced number of links — unlike SDI.

In the long run, this means decreased costs, improved bandwidth consumption and

boosted overall efficiency [10].

One of the first normatives on this matter was introduced back in 2007. The

SMPTE ST 2022 [11] suite of standards describes a reliable way of using IP to

transmit signals that were traditionally sent over serial interfaces, including uncom-

pressed video, audio, synchonization patterns and — last but not least — ancillary

data packets.

26

A SMPTE ST 2022-6 stream can be seen as an IP version of the SDI flow. The en-

tire SDI content is packetized for routing, including both blanking intervals — which

is why ancillary data gets transparently transported along with all media content.

This approach has one evident drawback, however: on receiving end, devices must

read, process and de-embed the whole packet flow in order to access the individual

tracks of that stream, even if only interested in one of these particular essences.

At a later stage, a global team of engineers and broadcasters gathered along with

SMPTE to develop a new suite of IP standards. The collaboration efforts were

focused on the definitive transition from circuit-switching SDI to a flexible, manage-

able IP workflow, suitable for multi-platform and mixed-consumption scenarios.

The resulting SMPTE ST 2110 standards specifies the carriage, synchronization,

and description of separate elementary essence streams over IP for real-time pro-

duction. Each stream is individually timed by the ST 2110 system and can take

different routes over the network to arrive via unicast or multicast at one or more

receivers [12]. This allows each component to be processed, transported, and stored

separately from the others, as illustrated in figure 3.6.

The standards are split into four main documents: 2110-10 for timing and syn-

chronization, 2110-20 for uncompressed active video, 2110-30 for PCM audio, and

2110-40 for ancillary data [13][14][15][16]. SMPTE ST 2110-40 standardizes how

metadata is encapsulated, defining that contents of ancillary packets shall be di-

rectly mapped into RTP packets as specified in IETF RFC 8331 [17].

2022-6 STREAM NETWORK

VIDEO

AUDIO

ANCI

G
A

T
E

W
A

Y
G

A
T

E
W

A
Y

SDI

SDI

2110-20 VIDEO

2110-30 AUDIO

2110-40 ANCI

NETWORK

2110-20 VIDEO

2110-30 AUDIO

2110-40 ANCI

SMPTE

ST 2022
A)

SMPTE

ST 2110
B)

Figure 3.6: Hypothetical SDI source mapped onto ST 2022 and ST 2110 flows.

27

3.1.5 Ancillary data structure

This topic is standardized by SMPTE ST-291 [18], which defines the basic for-

matting structure of the ancillary data space in digital video data streams in the

form of 10-bit words. Application of this standard includes, but is not limited to,

high definition digital television interfaces, as the one described previously.

Space available for ancillary data packets is defined in documents detailing the

connecting interfaces. Ancillary data packet payload definitions for a given appli-

cation may be specified by a SMPTE Standard, Recommended Practice, Registered

Disclosure Document, or by a document generated by a third party individual. When

a payload format is registered with SMPTE, an application document describing its

content is required and the data packet is identified by a registered Data Identifica-

tion word [18].

Ancillary data packets are divided into into Type 1 and Type 2, with small differ-

ences between each, as indicated in figure 5.6. The basic semantics comprises:

• Ancillary Data Flag (ADF)—A three-word start sequence to enable pack-

ets to be detected, having values 0x000, 0x3FF and 0x3FF.

• Data Identifier (DID) — Used to distinguish packets carrying a particular

type of ancillary signal.

• Secondary Data Identifier (SDID) — Defined as a combination of data

ID and a secondary data ID. Used only in Type 2, allowing a wider range of

identification values.

• Data Block Number (DBN) — Distinguishes successive ancillary data

packets with a common data identifier. Used in Type 1 only.

• Data Count (DC) — Number which indicates the quantity of user data

words to follow.

• User Data Words (UDW) — The payload of the packet, with a maximum

of 255 words. Defined according to the packet type.

• Checksum (CS) — Word to permit error detection.

28

USER DATA

WORDS

(max. 255)

A
D

F

1
0

-B
IT

S
 W

O
R

D

ANCILLARY DATA PACKET

A
D

F

A
D

F

D
ID

D
B

N

D
C

C
S

A) TYPE 1

USER DATA

WORDS

(max. 255)

A
D

F

ANCILLARY DATA PACKET

A
D

F

A
D

F

D
ID

S
D

ID

D
C

C
S

B) TYPE 2

Figure 3.7: Ancillary data semantics. Type 2 packets are composed of the same elements

as Type 1, except for the DBN, which is replaced by SDID. Adapted from [19].

Provision is made for ancillary data exceeding 255 words to be carried in two

or more linked packets, not necessarily contiguous with each other [19]. Many dif-

ferent applications explore the ancillary spaces. The HANC region accommodates

high-bandwidth data or services that need to be synchronized to a particular line.

Examples are embedded audio and VPID (Video Payload Identifier). On the other

hand, VANC is commonly used for low-bandwidth data, or for resources that only

need be updated on a per-field or per-frame rate.

Some of these applications are intended for internal use within broadcast workflow,

like time-code. Some are intended to propagate to end user, like closed captions.

Some ancillary data come and go through the production pipeline, while others

simply get lost. Some are time-aware, while others are temporarily bound to video

essence and selectively picked by receivers.

3.1.6 Overview

In terms of intended usage for this project, ancillary data updated with a certain

degree of frame accuracy seems enough for our proposed goal, therefore suggesting

that these could be properly carried in VANC space. The semantics of user data

words filling the ancillary data packets can be entirely personalized to fulfill the

application needs. Metadata could, for example, be written in KLV (Key-Length-

Value) format — a data encoding protocol specified in SMPTE ST 336 [20]. This

level of flexibility, however, imposes a series of short and mid-term restrictions.

29

A custom-built implementation may require SMPTE registration and may not be

supported by current installed base of broadcast devices and systems — eventually

requiring additional development of firmware or software for interpreting these ancil-

lary packets. An alternative for overcoming this constraint relies on the employment

of a well-consolidated protocol that could be adjusted to the project needs. Detailed

in section 3.3, ANSI/SCTE 35-104 messages arise as a feasible option.

3.2 MPEG-2 Transport Stream

The MPEG Transport Stream is a standard defined by ISO/IEC 13818-1 [21] and

ITU-T Recommendation H.222.0, describing a digital container for media and data

elements to be stored or transmitted live. It is widely adopted by the industry,

specially when sending encoded and compressed streams between facilities, over in-

ternet, satellite, or terrestrial broadcasting — scenarios where errors in transmission

channel are likely to occur. A brief summary is presented below.

3.2.1 Stream structure

The standard defines an Elementary Stream (ES) as the result of the encoding

process of each audio, video and data essences of a media source. In order to facilitate

manipulation of this continuous flow of data, elementary streams are divided into

packets, originating a flow denominated as Packetized Elementary Stream (PES).

Each PES has a unique identifier, called Packet Identifier or PID. This value is

used to indicate to which stream a packet belongs, and can be any in the range of 32

to 8190 [22]. A combination of PES packets sharing a common time base establishes

a Program (or Service).

Since PES flows do not have any indication to which services they are associated

with, a mechanism is needed to create this bounding. This is achieved with the

usage of a Program Map Table (PMT) — a structure that contains a list of PIDs of

each packetized elementary stream related to a program.

30

Finally, a Program Association Table (PAT) stores the PIDs linked to PMTs of

all services in a transport stream. This table is always identified with PID 0 and

must be transmitted frequently, allowing a decoder to recognize the structure of the

TS. Figure 3.9 illustrates this semantics with an example.

On receiving end, reconstruction process starts with searching for PAT sections

and PMT tables. Each of these provides the identifiers for elementary streams,

allowing data to be cached and finally sent to the appropriate decoding module.

MPEG

TRANSPORT

STREAM

PROGRAM

100

0

501

502

503

1025

PROGRAM

200

601

602

603

1026

PID

PAT – Program Association Table

Program #100 – PMT PID 1025

Program #200 – PMT PID 1026

PMT – Program Map Table

Video – MPEG-2 Video PID 501

Audio – MPEG-2 Audio PID 502

Data – SCTE-35 Cues PID 503

PMT – Program Map Table

Video – AVC Video PID 601

Audio – AAC Audio PID 602

Data – CTA-708 CC PID 603

Figure 3.8: Illustration of MPEG-TS with two hypothetical services.

3.2.2 Packet composition

A standard TS flow is comprised of packets, which form the basic unit and has

a total length of 188 bytes. First four bytes are dedicated to the header while the

rest form the packet payload. All TS packets shall start with the MPEG-defined

synchronization byte 0x47. Any packet not starting with this synchronization byte

is considered invalid and rejected [23]. Other fields in the header are used for error

checking, continuity, prioritization, among other utilities which are not going to be

covered in this text.

31

HEADER

(4 BYTES)

DATA PAYLOAD
(VARIABLE LENGTH)

HEADER

(4 BYTES)

DATA PAYLOAD
(VARIABLE LENGTH)

TS TS TS TS TSTS TS TS TS TS

0x47

SYNC BYTE
(8 BITS)

PID

PAYLOAD IDENTIFIER
(13 BITS)

TRANSPOR

ERROR

INDICATOR

(1 BIT)

ADAPTATION

FIELD
(VARIABLE

LENGTH)

PAYLOAD

UNIT START

INDICATOR

(1 BIT)

TRANSPORT

PRIORITY

(1 BIT)

TRANSPORT

SCRAMBLING

CONTROL

(1 BITS)

ADAPTATION

FIELD

CONTROL

(2 BITS)

CONTINUITY

COUNTER

(4 BITS)

MPEG-2

TRANSPORT STREAM

Figure 3.9: MPEG-TS packet structure.

When it comes to TV and media metadata, SMPTE ST 2038:2021 [24] defines

the syntax for carriage of ancillary data packets in MPEG-2 Transport Stream PES

packets. These guidelines should be carefully observed by registered applications

and compliant hardware, specially professional encoders and decoders performing

this sort of operation.

The MPEG-TS encapsulation will be particularly useful for the experimental im-

plementation of the novel proposal, as presented in chapter 4. Many software tools

can manipulate TS media, and some are able to read and write ancillary packets as

described above.

3.3 SCTE-35/104 Standards

Created by ANSI and the Society of Cable and Telecommunications Engineers,

SCTE-35 and SCTE-104 standards have been adopted by the industry for many

years. Both work in companion as signaling protocols to inject markers on video

stream, supporting delivery of events — frame accurate or non-frame accurate —

and associated descriptive data [25].

32

These protocols are mainly employed for services such as Dynamic Ad Insertion

(DAI) and Digital Program Insertion (DPI), allowing TV networks to inject triggers

into their distribution feed. Upon reception, SCTE messages can be used to delimit

break intervals and indicate to affiliates time slots in the stream where to auto-

matically insert local advertisements. Some other applications have been proposed

and are currently in use, such as prompting remote recordings, enforcing content

restrictions, indexing, among others.

PROGRAM

CONTENT

AD

#1

BREAK

START

AD

#2

AD

#3

AD

#4

AD

#5

PROGRAM

CONTENT

BREAK

END

ADS TO BE REPLACED IN

DIGITAL STREAMS

TIME

STREAM

Figure 3.10: Typical advertisement break example, with slots that could be dynamically

replaced using SCTE standards. Adapted from [25].

SCTE-35 and 104 are tightly intertwined, complementary to each other [26]. First

published in 2001, SCTE-35 is the core signaling standard, originally contemplating

events to be delivered through MPEG-2 Transport Streams. Later, in 2004, SCTE-

104 emerged describing API messages that could be carried over TCP/IP data links

or through the VANC space of unidirectional SDI base-band video [27][28]. These

triggers are typically used as a precursor to eventual creation of SCTE-35 messages

on outgoing compressed streams.

Another way of visualizing this mechanism is assuming that SCTE-104 cues in

VANC space are requests from an operator or automation system to create splice

markers in the video signal. Compliant MPEG-TS encoders processing this feed

would translate these requests to SCTE-35, including all descriptive data within.

This data is going to be interpreted by a dedicated device and appropriate action

shall be taken upon live reception of the feed, as illustrated in figure 3.11.

33

INJECTOR ENCODER

BASEBAND

FEED

with SCTE-104

AUTOMATION

SYSTEM

BASEBAND

FEED

MPEG-2 TS

with SCTE-35

TXTX

AUTOMATION

CONTROL

OPERATOR

Figure 3.11: SCTE-35 vs SCTE-104 schematics, adapted from [25].

The system processing the messages on receiver side may be an ad server, a set-

top box, a video switcher, or any other equipment. Based on the unique identifiers

and flags injected, the final operation may be insertion of an advertisement, another

piece of video, overwriting of content with a locally generated slate [29], or any other

remotely triggered operation.

For the purpose of illustrating the semantics of this digital cueing protocol, next

sections are going to focus on SCTE-35 signaling commands, as described in its

normative. SCTE-35 can be more frame accurate than the legacy audio cue tone

system (DTMF), also adopted by broadcasters. Furthermore, for outputs formats

such SRT, ASI and IP ASI streams, no additional translation steps are required

for SCTE-35 markers [30]. With the broadcast infrastructure moving deeper into

OTT domains, SCTE-35 data can also be mapped into MPEG-DASH and HLS,

very common WEB streaming protocols, which may be a great advantage.

Finally, it is important to note that while SCTE-35 is an international standard,

its implementation can incorporate vendor or user specific set of rules. This level of

flexibility gives rise to diverse interpretations of its contents and the manner in which

operations shall be conducted. Supplementary documents later published tried to

address this aspect, but it is essential to exercise caution and pay close attention to

this characteristic when working with the protocol.

34

3.3.1 Splice points and events

To enable the splicing of compressed bit streams — which is the prime goal of the

standard —, SCTE-35 normative defines a splice point. A splice point is a marker

indicating a place in the bit-stream where a switch can be made. Splicing at such

points may or may not result in good visual and audio quality, and that depends on

the performance of the splicing device and adopted parameters.

The employment of advanced video compression, such as H.264 (AVC) or H.265

(HEVC) typically requires advance notice of splice points in order to allow the

creation of spliceable markers in the video elementary stream. In most systems, this

is provided by the use of SCTE-104, which offers a communication path from the

base-band injection system to the encoder.

There are two types of splice points: In points are locations in the bit stream

where it is acceptable to “enter” from a splicing perspective. Out points, on the

other hand, are locations where it is acceptable to “exit” the bit stream. Both are

hypothetical positions and can be co-located. This document will not delve into

splicing streams and the complexities associated with performing such operations

on compressed video. As a result, further details will be omitted.

According to SCTE-35 standard, a splice event is signaled through a splice com-

mand. The command identifies which point within a stream to use for that event

and provides additional details for its interpretation. On receiving end, once stream

has been captured and decoded, the cue messages are sent to the downstream device.

This equipment may choose to act or not act upon a signaled event, and its behavior

is not specified or constrained in any way by the standard.

3.3.2 Normative schema

Elements composing the semantics of SCTE messages are detailed by the nor-

mative text in combination with a XML schema document [31], comprising the full

specification. Unless otherwise specified, the normative text and values assigned to

attributes in this specification are constrained by the bit stream equivalent field.

35

No XML documents representing the structures defined in the schema are consid-

ered conformant unless they are valid according to the schema document [25]. For

the purpose of illustrating how parameters are distributed and organized, a slightly

adapted version of a compliant SCTE-35 message is included in Appendix A.

3.3.3 Splice commands

Commands are sent to the injection system with the appropriate flags and data.

Each command has its own set of attributes to be filled and a summary adapted

from the baseline normative text is shown below.

• splice null() — Allows a splice info table to be sent without issuing one of

the other defined commands. The cue injection equipment may send these

messages at intervals to be used as heartbeat messages, ensuring the proper

operation of the system.

• splice schedule() — Command provided to allow a schedule of splice events

to be conveyed in advance.

• splice insert() — The most important command, shall be sent at least once

before each splice point. Provides ways of adjusting PTS of injection, break

duration and a flag for indicating a network in or out point.

• time signal() — A time synchronized data delivery mechanism. Provided for

extensibility by adding descriptors while preserving the precise timing allowed

in the splice insert() command.

• bandwidth reservation() — Provided for reserving bandwidth in a multi-

plex. A typical usage would be in a satellite delivery system that requires

packets of a certain PID to always be present at the intended repetition rate

to guarantee a certain bandwidth.

• private command() — A structure that provides means to distribute user-

defined commands using the SCTE-35 protocol. The first field in each user-

defined command is a 32-bit identifier, unique for each participating ven-

dor. Receiving equipment should skip messages containing private command()

structures with unknown identifiers.

36

3.3.4 Injection principles

The main point about splice information is guaranteeing synchronization with

video. Observing above mentioned commands and their composition, it is possible

to roughly define two different classes of splice events: those that contain a specific

PTS value (which refers to a time stamp in the video and audio PID’s of the service),

and all the others.

Commands that do not contain a time stamp are injected as soon as possible after

reception [23]. Looking specifically at splice insert() semantics, a flag is available

for indicating if the command should be working on immediate or non-immediate

mode, as shown in figure 3.12. Splice immediate indicates that the splicing device

shall choose the nearest opportunity in the stream, relative to the splice info table,

to splice. When not in this mode, the message gives a splice time for the intended

cue moment.

Figure 3.12: Semantics of splice insert() command, adapted from [25].

37

Due to the nature of novel proposal — which will be mostly handling the injection

of graphics metadata into live feeds —, seems adequate to exclusively use splice

immediate mode when decorating the stream. Additional details are elucidated in

the subsequent sections.

Other fields of interest present in the command are the splice event id and the

out of network indicator. First one is a 32-bits unique splice identifier, used to

stamp the interval defined between splice points, while the second is the actual flag

indicating an out point (when set to “1”) or a in point (when set to “0”).

According to the normative, splice event id values do not need to be sent in an

incrementing order in subsequent messages nor must they increment chronologically,

and may be chosen at random. Additionally, a splice event id value may be re-used

when its associated splice time has passed, or when the logic behind the notified

event has expired.

3.3.5 Overview

In the previous sections, we delved into the technical details of the protocols that

will support our proposal, with emphasis on the essential components necessary for

its implementation. More specifically, SCTE messages might help establishing a

well-formed signaling model, enabling downstream systems to be implemented in a

cost effective, consistent fashion. This topic is addressed in the following chapter.

38

Chapter 4

Novel Proposal

4.1 Introduction

As previously pointed, the practice of hardcoding graphics onto the video intro-

duces a series of undesirable limitations, such as the inability to modify the data

contents or adjust the composition for a new rendering. To enable greater flexibil-

ity throughout the production and distribution chains, graphics should be treated

as an additional layer of content. This approach allows broadcast systems and/or

end-user devices to handle content essences independently.

MEDIA

CONTAINER
GRAPHICS ESSENCE

VIDEO ESSENCE

AUDIO ESSENCES

CLOSED CAPTION

OTHER ANCI DATA

Figure 4.1: Illustration of separate media essences.

One effective approach to achieve this objective is exploring the ancillary space,

which is encapsulated within media interfaces and distribution protocols. More

specifically, usage of SCTE-35/104 cues may offer additional advantages, provided

that adjustments to the message format are implemented appropriately.

39

One of these advantages lies in the fact that, being a well-known protocol, the

current installed base of broadcast systems could potentially accommodate such

messages seamlessly, opening up opportunities for automated GFX tools to interact

with triggers embedded in SCTE-decorated feeds.

Several crucial steps need to be observed in order to support the intended pro-

posal. These steps include specifying the nature of the data to be carried in the

ancillary space and in the SCTE marker, determining how and when to activate

its injection, establishing methods for decoding it at endpoints, and implementing

control mechanisms to support all above mentioned operations.

4.2 Engines redefined

When delving into the proposed topology, the first important aspect to consider

is the new role that graphic engines will play in this novel process. In the current

workflow, actions taken by users operating the system are in fact translated into

commands, dispatched either to graphic templates or to the engine via control chan-

nels. These commands are subsequently interpreted and processed to generate a

visual composition, which is blended with the clean background video.

Since the goal is allowing graphics to be processed or rendered at distributed

points along the transmission path, background video must be kept clean at this

initial stage. On the other hand, commands issued to the engine, whether by users

or externally, must be appropriately adapted into a symbolic representation that

can be carried by the the chosen ancillary data protocols, namely SCTE-104 and

SCTE-35.

Modern character generators, whether software or hardware-based, should provide

sufficient scripting tools to seamlessly execute this task, possibly taking advantage

of APIs utilized for linking the user interface with graphic assets. The adaption of

commands shall result in SCTE notifications that are ready to be forwarded to the

ancillary injector. The engine sending notifications will be referred to as the host.

40

Note that the host generator shall be connected to the ANCI embedder through

the network, serial port, or any similar. This dedicated tool shall be the one actually

decorating the real-time feed, following the normatives and user-defined instructions.

Furthermore, observe also that a host engine may still generate a video signal out-

put, although this resource should be exclusively utilized for monitoring purposes.

When an operator is dispatching overlays following director’s instructions or in re-

sponse to video actions, an auxiliary keyed output with the expected graphics result

should be internally routed to a preview monitor within the production facility.

At the receiving end, a single or multiple graphic engines must be capable of

converting the notifications captured from the ancillary data protocol back into the

necessary commands for generating the visual composition, mimetizing the actions

performed by the host CG. With the appropriate data sources and libraries, the

graphic messages can be rendered seamlessly and automatically, finally to be blended

onto the clean video feed. Engines receiving notifications will be entitled replicas.

ANCI

INJECTOR
ENCODER

CLEAN FEED

with SCTE-104

HOST

GFX ENGINE

PROGRAM

 FEED

MPEG-2 TS

with SCTE-35

TXTX

GRAPHICS

OPERATOR

SCTE

NOTIFICATION

SCTE

NOTIFICATION

Figure 4.2: Illustration of host engine and ANCI injection system.

ANCI

READER
DECODER

CLEAN FEED

with SCTE-104

REPLICA

ENGINE

DIRTY

FEED

MPEG-2 TS

with SCTE-35

RXRX

SCTE

NOTIFICATION

FILL

KEY

DSK

Figure 4.3: Illustration of replica engine and ANCI reading system.

41

4.3 Domain

Another point to observe is the establishment of a logic delimitation, baptized in

this project as a domain. Inside a domain, systems and devices share a common set

of rules and parameters, meaning that they can “comprehend” each other mutually.

In the context of this novel proposal, a domain consists of a group of graphics

engines (hosts and replicas) capable of processing commands in a predefined format

for a library of templates. In other words, messages generated by host CGs shall be

interpreted and decoded by any replica CGs within the domain.

The extension of the domain depends on business models and each particular

application. In theory, it could be as wide as wanted, encompassing the whole park of

graphics generators serving a broadcaster, for example. However, this approach may

face technical limitations, particularly when dealing with multiple live transmissions

and extensive asset libraries.

In that case, a narrowed version seems more appropriate, attending specific de-

mands or certain divisions of a brodcaster’s production site, for instance. Another

example could be the establishment of a domain for large events with multiple feeds,

like the ones discussed in section 2.3.1. This scenario is presented in section 4.7.1.

GFX GENERATION

HOST ENGINE 1

HOST ENGINE 2

HOST ENGINE N

 . . .

GFX RECOVERY

REPLICA ENGINE 1

REPLICA ENGINE 2

REPLICA ENGINE N

 . . .

RESOURCES

TEMPLATES

DATABASES

Figure 4.4: Illustration of a domain and its resources.

42

4.4 Template library

One of the crucial resources for the operation is the template library and its

availability. Observe that graphics assets are created using static or dynamic data

fields, including vector elements, images, or animations. These components can

either be embedded within the internal data structure or referenced symbolically to

external media files or similar resources.

The preferred and commonly adopted approach is to have all these assets available

online in a shared network location, ensuring that eventual updates are instantly

reflected in all systems. It should be noted that a graphic template may have versions

tailored for TV, mobile devices, or other screen sizes. If that is the case, the replica

engine must select the appropriate format based on its designated parameters.

In this project, it is also assumed that replica engines can efficiently switch and

load any template from the library within a reasonable time, in a seamless way upon

reception of the notification triggers, given the proper scripting to allow such oper-

ations. However, depending on the technology employed, there may be limitations

imposed by the engine hardware or the control channel, which may affect retrieval

times, memory size, and versioning – and thus should be carefully considered.

4.5 Notification format

As previously stated, host engines do not handle the direct placement of markers

in the feed. Instead, they are responsible for adapting graphics metadata into SCTE

notifications, which are then sent to the injection system. These notifications must

include sufficient information for a replica generator to accurately decipher templates

used, controls, and, most importantly, the data written in the graphics fields.

Evaluating SCTE-35/104 semantics and considering the constraints for ancillary

message carriage, roughly two distinct strategies could be considered for performing

the aforementioned task: writing the whole graphics metadata into the ancillary

space or embedding an unique identifier to characterize GFX contents. Both meth-

ods are discussed below, highlighting the advantages and drawbacks of each.

43

4.5.1 GFX command ID

In this mode, every single command issued to graphic messages shall be assigned

an unique identifier, which serves as a key for linking the template with the corre-

sponding set of data populating its fields. These IDs and their associated content

shall be stored in an external resource, baptized as the commands database.

The uniqueness of these identifiers guarantees that replica engines shall be able to

retrieve templates, commands, and data solely by consulting the key stored in the

collection. The extension of the domain and the number of host engines generating

notifications directly relate with the size of this database. An orchestrator may be

appointed to manage distribution of IDs in response to requests within a domain.

Notifications to the SCTE injection system shall be carried in a splice insert com-

mand, and the splice event id field shall correspond to the unique ID designated by

the database manager. As shown in Appendix A, this field has a total length of 32

bits, unsigned int type. Consequently, the commands database should be limited

to a maximum of 232 entries, which corresponds to more than 4 billion commands.

Workarounds for this restriction may be reducing the domain size, either on the

amount of host engines generating entries or implementing a time-frame constraint.

Furthermore, the notification shall be sent with the splice immediate flag set to

“1”, ensuring that the cue is written into the feed as soon as possible upon its

reception by the ancillary embedder. Other flags and fields shall be maintained with

their default values. The process of receiving the command to injection should take

as little time as possible. Typically, anything below 0.5s is virtually imperceptible.

One advantage of operating with a command database is the ability to modify,

update, or remove previously registered contents. For instance, consider a scenario

where a feed decorated with GFX metadata is recorded, and the ancillary essence

is successfully transferred to the media. Suppose that, later on, changes are made

to the database to rectify data that has been wrongly displayed. If the material

is retrieved, reading of IDs by replica generators would trigger the creation of a

composition with the updated version of data.

44

Naturally, it is essential to maintain the appropriate access rights for reading and

writing in the database, whether it is stored online or offline. Additionally, it is

assumed that the total time required for I/O operations in the database is shorter

than the time needed for decorated feeds to be transported from the source to the

destination. This is typically the case, especially when audio and video have to be

compressed and decompressed along the path.

COMMANDS

DATABASE

ENGINE RECEIVES A COMMAND

REQUESTS DB A UNIQUE ID

ORCHESTRATOR RECEIVES REQUEST

REPLIES WITH UNIQUE ID
RECEIVES COMMAND ID

SENDS COMMAND + DATA WITH ID
STORES COMMAND + DATA

SENDS ANC NOTIFICATION WITH ID

CLEAN

FEED

TIMETIME

TOTAL

TIME

UNTIL

INJECTION

RECEIVES IMMEDIATE NOTIFICATION

HOST

ENGINE

ANCI

INJECTOR

Figure 4.5: Illustration of steps until injection.

4.5.2 Standalone mode

This mode allows broadcasters adopting the solution to write their graphics meta-

data in a customized format, appropriate for their domains. As a requirement, the

entirety of data necessary to populate the graphics shall be embedded in the no-

tification itself. Consequently, the receiver side only needs access to the templates

library and the clean feed, simplifying the recovery process significantly.

In this scenario, the notification for the SCTE injection system shall be carried in

a private command(), as briefly mentioned in section 3.3.3. Broadcasters interested

in utilizing this method must undergo a registration process to obtain a valid user

identifier for their SCTE messages. The advantage of this approach is its simplicity,

since it eliminates the requirement for connection to an external commands database.

45

On the other hand, post-editing of data contents becomes virtually impossible

once the material is distributed, unless a complex ancillary data amendment is

performed at each endpoint. This mode may be particularly suitable for overlays

that involve rapidly changing data, generated by real-time sensors, timing systems,

or similar sources. In such cases, updates to the displayed values can be directly

forwarded to the notification system without requiring any sort of database I/O.

4.6 Ancillary manipulators

Once the ancillary message is properly formatted, it needs to be injected into the

real-time feed. This task can be accomplished using either software or dedicated

hardware. Conversely, extracting the messages from the feed follows an analogous

process: an ancillary reader retrieves the SCTE markers and forwards the messages

to the replica engine.

For instance, consider the device and schematics depicted in Figure 4.6. It show-

cases the features of an ANCI embedder/de-embedder electronic card, which receives

incoming SCTE-formatted messages through an ethernet interface and injects them

into the feed, whether SD, HD, or 3G-SDI. The same card model can also be em-

ployed for extracting user data. For more operational details, refer to Annex B.

Figure 4.6:

Ancillary embedder/de-embedder, manufactured by Cobalt Digital©. Source [32].

46

4.7 Scenarios

Now that the fundamental concepts for implementing the novel proposal have

been introduced, let’s explore some situations in which its potential advantages

become evident. Below scenarios are based on the case study discussed in section

2.3.1, where we examined the operational complexity and graphic generation in

large-scale events under specific circumstances.

4.7.1 Multi-language graphics

The new approach, outlined below, focuses on overlays that do not involve dy-

namic data updated in real-time, such as those derived from sensors. These graphics

have unique characteristics that, for the sake of simplicity, are not going to be ad-

dressed in this text.

As briefly mentioned, automated and on-the-fly generation of compositions in

multiple languages requires a costly infrastructure replication in the current work-

flow. Moreover, this capability is typically limited to a few selected feeds, contingent

upon broadcasters willingness in funding such a solution.

In the proposed workflow, the host broadcaster remains responsible for the graph-

ics generation service, but this time through the establishment and management of a

domain, including its resources. Ideally, this domain would have a time-limited scope

corresponding to the duration of the event, due to the nature of these productions.

For each local production unit, a graphic engine shall be allocated, following a

similar approach to the previous model. However, this device would function solely

as a host generator, sending SCTE notifications to an ANCI embedder installed at

the end of the PGM chain for each multlateral feed, as shown in Figure 4.7.

In this proposal, a command database would be employed, thus utilizing the com-

mand ID mode as discussed in section 4.5.1. Additionally, a new generic resource,

called the translation database, would serve as a repository for translated graphic

components such as names, competition venues, schedules, events, and more.

47

AUDIO

MIXER

HOST

ENGINE

ETH

VENUE #N LOCAL PRODUCTION UNIT #N

PGM MUX
ANCI

INJECTOR

OUT

CLEAN

FEED #N

AUDIO SOURCES

COMMANDS DB

+ TRANSLATIONS

TEMPLATES

LIBRARY

VIDEO SOURCES

TX

VISION

MIXER
PGM

GRAPHICS

OPERATOR

Figure 4.7: Injection workflow in one of the multilateral feeds.

Once the clean feeds are decorated with graphic metadata, they should be routed

through the traditional real-time distribution and transport paths, until they reach

the point where they will be rendered in a visual composition. This operation shall

take place within the premises of the media rights holders, being one crucial aspect

of this topology. Access to templates library and databases that are part of the

event domain must be granted.

The replica engines, serving rights holders, should receive incoming SCTE no-

tifications from ANCI de-embedders installed at the end of the PGM feed of the

broadcaster’s production unit. By doing so, graphics could be automatically gener-

ated for the signal being aired, based solely on the injected markers captured from

the ancillary essence. Even if a switching between different video feeds occurs, the

generator would be able to recognize the GFX IDs and create the visual composition

accordingly. Having one engine capable of rendering graphics for multiple feeds and

packages creates a substantial opportunity for cost savings.

Based on their specific configurations, the replica engines could also translate

graphics content into the desired language for the audience. To achieve this, appro-

priate databases and translation scripts need to be developed. Depending on the

structure of the messages, it may even be possible to convert numerical values and

units, such as between the metric and imperial systems, for example.

48

Finally, the rendered graphics need to be blended with the clean feed through

the keying process, as discussed and exemplified earlier. Figure 4.8 illustrates the

hypothetical reception of feeds package, internal routing and the graphics recovery

process.

REPLICA

ENGINE

ETH

CONTRIBUTION MRH PRODUCTION UNIT

COMMANDS DB

+ TRANSLATIONS

TEMPLATES

LIBRARY

FEED #1

FEED #2

STUDIO CAMERA

PLAYOUT

VISION

MIXER

PGM

PGM MUX
ANCI

READER

PGM

CLEAN

PGM

DIRTY

PLAYOUT

FEEDS PACKAGE

STUDIO CAMERA

AUDIO

MIXER

OUT

OUT
AUDIO SOURCES

DSK

MUX

FILL

KEY

TIME

PGM OUTPUT

Figure 4.8: Reception of feeds package at rights holder premises.

One critical aspect of the proposal is ensuring that the metadata injected into the

ancillary data space is carried throughout the entire broadcast chain. This requires

all systems along the transmission path to be capable of effectively transmitting and

preserving this metadata. For example, consider the technical specifications of the

Carbonite Black [33] vision mixer, which can be configured to strip or pass ancillary

data from the video output. The amount of data, and how it is stripped, depends

on the video format of the video signal. Additionally, reference documentation also

indicates that some video manipulations may automatically strip metadata from the

feeds.

49

4.7.2 Adapted video formats

Consider now the scenario of distributing content on mobile devices, where screen

sizes and aspect ratios vary. To address this, we will retain part of the previously

proposed formulation with host engines and ANCI embedders on the clean feed

generation side. The main change occurs on the receiving end.

Imagine that a broadcaster intends to generate two different output formats for

its feed: one for linear TV and another for digital distribution, with a video format

adapted for mobile devices, for example. In this case, two replica engines could be

allocated, directly in the master control room serving the output channels for each of

these platforms. This arrangement would allow the generation of adapted graphics

for both formats, provided that the necessary templates are available.

M
A

S
T

E
R

 C
H

A
N

N
E

L
 O

U
T

P
U

T

TEMPLATES

+ DATABASES

D
IG

IT
A

L
 C

H
A

N
N

E
L

 O
U

T
P

U
T

DECORATED FEEDS PACKAGE

MRH PRODUCTION UNIT

ROUTING & DISTRIBUTION

SERVERS
VIDEO FORMAT

CHANGE

ANCI GFX

RECOVERY

REGULAR

TEMPLATES

ANCI GFX

RECOVERY

ADAPTED

TEMPLATES

PGM CLEAN +

ANCI

SATELLITE SATELLITE TERRESTRIALTERRESTRIAL WEBWEB VODVOD

T
X

T
X

PGM DIRTY PGM DIRTY

Figure 4.9: Proposal of simultaneous graphics generations for distinct output channels.

A great way of testing the scenarios presented above would be implementing a

small-scale model of the production infrastructure. Certain broadcasting tools can

be replicated in digital application, even if not directly dealing with real-time video

signals. Aspects related to templates and database manipulation could be evaluated,

which is one of the goals of the experimental model to be presented next.

50

Chapter 5

Experimental Implementation

5.1 Introduction

The following simulation focuses on the usage of SCTE-35 cue messages within

our proposed topology. It relies entirely on adapted software solutions capable of

handling transport streams, splice injection, and software-based graphics generation.

The objective is evaluating the overall behavior of the system, particularly when

writing or reading ancillary notifications.

To showcase the flexibility of the proposal, a domain shall be established, and sim-

ple graphics generated for two generic and recorded MPEG-TS clean feeds. These

feeds will be decorated with SCTE markers, indicating the presence of graphics

metadata that will be carried alongside with the video essence. After undergoing

a network distribution stage, the feed package shall be captured by an indepen-

dent graphics recovery system, with its assigned replica engine. This engines shall

generate the corresponding visual composition based on the ancillary data received.

In addition, a setting on receiver side shall allow the user to select the desired

language for rendering the graphics. Two options shall be offered: English and

Japanese. A mechanism shall be developed to allow switching between the two

streams being transmitted in the network. Furthermore, templates shall be shared

among both engines, and two output formats should be available: TV and mobile.

Commands issued shall be stored online, in a database with the appropriate reading

permissions, simulating a large-scale distribution of the feeds package.

51

5.2 Methodology

The implementation of this solution will primarily rely on two broadcast toolkits:

TSDuck and NodeCG. The first will be responsible for the manipulation of transport

streams, including the injection and extraction of tables and splice markers. The sec-

ond is a graphics generator framework, which is entirely based in web technologies.

It supports a collection of custom-built templates and control APIs. More detailed

information about their characteristics is provided in the following subsections.

For testing purposes, generic video materials are going to be used to create two

sports-like feeds: one with swimming footage and the other with athletics content.

These videos have been obtained from public repositories and can be freely dis-

tributed. A processing stage will adapt these clean video feeds to an specific output

format.

Regarding the graphics generation process, there are two distinct workflows to be

considered, both sharing the same adapted infrastructure, as summarized below.

• Transmission workflow — Where GFX commands are issued, processed,

sent to the database and SCTE messages injected into the clean video feed.

TX WORKFLOW MONGODB

COMMANDS

DATABASE

MONGODB

COMMANDS

DATABASE

MONGODB

COMMANDS

DATABASE

NODECG

HOST

ENGINE

NODECG

HOST

ENGINE

NODECG

HOST

ENGINE

TSDUCK

SPLICE

INJECTOR

TSDUCK

SPLICE

INJECTOR

TSDUCK

SPLICE

INJECTOR
CLEAN FEEDCLEAN FEED DECORATED FEEDDECORATED FEED

MPEG-TS MPEG-TS

with SCTE-35

XML UDP

JSON

insert

GRAPHICAL

USER

INTERFACE

GRAPHICAL

USER

INTERFACE

Figure 5.1: Experimental transmission workflow for both feeds.

• Receiver workflow — Where both clean feeds are captured and routed,

SCTE cues extracted, database queried and visual composition rendered.

52

RX WORKFLOWMONGODB

COMMANDS

DATABASE

MONGODB

COMMANDS

DATABASE

MONGODB

COMMANDS

DATABASE

NODECG

REPLICA

ENGINE

NODECG

REPLICA

ENGINE

NODECG

REPLICA

ENGINE

TSDUCK

SPLICE

MONITOR

TSDUCK

SPLICE

MONITOR

TSDUCK

SPLICE

MONITOR
DIRTY FEEDDIRTY FEED

UDP

JSON

query

OBS

DSK

OBS

DSK

OBS

DSK

FEED #1FEED #1

FEED #2FEED #2

TSDUCK

SWITCH

TSDUCK

SWITCH

TSDUCK

SWITCH

JSON HTML5

RENDER

EN | JP

Figure 5.2: Experimental receiver workflow and dirty feed output.

5.3 Tools and material

5.3.1 Hardware

For this project, two Raspberry Pi 3 single-board computers are going to be

utilized as stream servers and SCTE injectors. These devices will run the standard

Raspbian operating system with optimized instructions for the architecture. Both

TSDuck and NodeCG can be executed on these units without significant issues, as

long as the necessary dependencies and libraries are installed.

On the receiver side, a standard computer running a Linux distribution will be

used to fulfill the roles of TS selector, SCTEmonitor, replica engine, and downstream

keyer. As it generates the final video output, enough GPU power should be available

to handle the manipulation of video streams. It is also possible to add multiple client

sets to decode and process the streamed content with ease.

Lastly, a network switch interconnects the devices and will serve as a video feed

distributor. In order to support this operational mode, transport stream packets

will be forwarded to a multicast address, ensuring that all receivers get the same

network traffic. Multicasting usually requires IGMP snooping to be enabled on the

device. For the purposes of the tests, an EdgeRouter X unit operating in switch

mode will be employed.

53

5.3.2 TSDuck utilities

TSDuck is a large C++ library for transport stream manipulation. Provided

services includes low-level features such as manipulating TS packets, intermediate

features such as demuxing and packetizing tables and high-level features such as

running TS processing pipelines [23].

As an open-source project, TSDuck also includes powerful filtering capabilities.

Custom filters can be defined to extract specific components from a TS, such as

audio or video streams, tables, or data. These filters can be combined and chained

to create complex processing workflows, allowing users to manipulate and modify

content according to their requirements.

In addition, a variety of input and output formats are supported, including file-

based operations, network streaming, tuners and similar devices. It can receive

and transmit transport streams over IP networks, making it a versatile tool for

applications.

5.3.3 NodeCG platform

NodeCG is an open-source broadcast graphics framework, allowing creation and

management of dynamic and custom-built graphics for live streaming, shows, and

similar broadcast events. It combines the power of web technologies with the flexi-

bility and real-time capabilities required for live productions. Its core is built with

Node.js, one of the most popular JavaScript runtime environments. The service runs

as server-side manager, acting as a bridge between the broadcast software and the

graphics elements, promoting seamless integration and communication.

NodeCG follows a modular architecture, where graphics are defined as individual

bundles. These resources can be created and customized to suit specific production

requirements. The basic structure of bundles consists of a HTML template, in-

cluding CSS stylesheets and JavaScript code. A control channel can be established

between these, the server and a web dashboard, constituting a complete management

ecosystem for the production.

54

In addition, NodeCG event-driven architecture allows response of graphics ele-

ments to events triggered by external resources. For instance, a graphic could be

updated when a specific message is received or when a button is clicked. This char-

acteristic is specially useful for this project, which will be handling the interactive

reception and injection of notifications from and to the SCTE-35 automation system.

On server-side source code, modules can be incorporated to NodeCG for additional

services and functions, developed by the community. One of these modules allows

network socket manipulations, which can be used to interface and control TSDuck

tools and parameters. Another module will be used to set up communication with

the external database service.

5.3.4 MongoDB

The GFX commands database will be entirely hosted in a MongoDB instance,

in the cloud. MongoDB is a distributed database at its core, with high availability

and scalability. As a non-SQL service, data is stored in flexible, JSON-like format,

meaning that fields can vary from document to document and structure can be

changed over time [34]. It is possible to map these models to objects in our CG

application code, making data easy to work with.

Two authorization profiles will be created in the cloud instance: host and broad-

caster. First profile is allowed to write and modify the database freely, and, therefore,

will be used by host engines and administrative tools. Second profile has only per-

mission to retrieve data, designated to be used in replica engines of our prototype.

5.3.5 Open Broadcaster Software

Open Broadcaster Software is an application that provides powerful tools for video

recording and live streaming. It is widely used by content creators, and professionals

in the broadcasting industry to capture, mix, and broadcast high-quality multimedia

content. OBS offers a user-friendly interface with a wide range of features and

customization options, making it accessible to both beginners and advanced users.

55

It is supported by multiple platforms, including Windows, macOS, and Linux,

providing also extensive compatibility with various video and audio capture devices,

cameras, microphones, and other peripherals.

OBS has a powerful scene composition system that allows creation of complex

layouts by combining various media sources, such as images, videos, text, and

even HTML5 pages. This last feature is particularly interesting for creating the

final graphics output mixed to the clean background stream in our project domain.

Therefore, OBS will play the role of a keyer in this experimental implementation.

5.3.6 FFmpeg

FFmpeg is the leading multimedia framework, providing a collection of libraries

and command-line tools for handling audio, video, and other sort of streams. One

of the key features of FFmpeg is its ability to convert, encode, and decode media

files, supporting a vast range of formats, from the most obscure to the most popular

ones.

Known for its robust media manipulation, FFmpeg cross-platform filters and pro-

cessing tools allows the adjustment of parameters such as resolution, bitrate, and

frame rate. Furthermore, tasks like resizing, cropping, and rotating videos can be

performed with ease. These features will be handful when adjusting the media files

to be transmitted, as described below.

5.4 Environment setup

5.4.1 Relevant aspects

To simulate the real-time transmission of the two feeds, the video material needs

to undergo treatment beforehand, in order to adapt it to the network infrastructure

and hardware conditions. In addition, the testing environment needs to be calibrated

to the packet-routing reality, which imposes a few constraints when compared to a

circuit-switching workflow.

56

The first aspect to be considered relates to latency. When using an IP network,

even in a small and controlled environment like the proposed one, introduction of

delays are inevitable due to the presence of buffers and the digital processing steps.

It is possible, however, to optimize certain parameters and minimize latency as much

as possible in all stages, from reading of media files, transmission and decoding on

receiver side.

Second aspect relates to video integrity. Since the idea is allowing the user to

switch between different streams in the network, players and tools decoding the feed

must be somehow prepared to handle the abrupt cut from one data flow to another.

5.4.2 Network

Each video stream will be transported in UDP multicast flows within the network.

This way, multiple receiving devices may subscribe to the same content without

overloading the transmitter. The UDP protocol is also more suitable due to its

simplicity, avoiding TCP overhead and handshaking.

The network is configured to have a MTU of 1500 bytes, which is the maximum

size of a data packet for transmission. To avoid unnecessary fragmentation and

overflow in network buffers, the data should be sent continuously and in controlled

way at each stage. Considering headers and that a MPEG-TS packet has 188 bytes,

a maximum of 7 packets should be encapsulated in the UDP payload at each time,

totaling 1316 bytes.

IP

U
D

P

TS TS TS TS TS TS TSIP

U
D

P

TS TS TS TS TS TS TS
MPEG-TS

STREAM 1IP

U
D

P

TS TS TS TS TS TS TS
MPEG-TS

STREAM 1

IP

U
D

P

TS TS TS TS TS TS TSIP

U
D

P

TS TS TS TS TS TS TS
MPEG-TS

STREAM 2IP

U
D

P

TS TS TS TS TS TS TS
MPEG-TS

STREAM 2

Figure 5.3: Representation of TS packets encapsulated in IP/UDP flow (not in scale).

57

5.4.3 Media preparation

In order to create the two files with swimming and athletics content to be loop-

streamed, both raw footages should first be cut in smaller clips with 60 seconds

each. A running timecode hard-coded to the video shall be incorporated, to help

checking synchronicity and smooth playback later on.

In the next step, video should be re-encoded, using a codec and parameters op-

timized for live streaming and real-time transmission. Also, a reasonably constant

and predictable data flow is desirable, to avoid short-time spikes on bandwidth us-

age and buffered information. To achieve this, x264 encoder will be adopted, with

a relatively consistent target bitrate and zero latency flags. These shall increase

reliability for transmitting time-sensitive content and boost encoding speed.

The above mentioned approach, however, may lead to lower overall video quality

and increased media sizes, specially when compared to the adoption of a true VBR

encoding method. For this experimental implementation and its controlled environ-

ment, bandwidth restrictions are not a major obstacle, but manipulation of large

media files should be avoided. To reduce operational complexity, video resolution

has been set to 1280x720 with progressive scan mode and framerate of 30 fps. Target

bitrate is set to be around 10 Mbps and all audio tracks removed.

Jumping from one transport stream to another will not necessarily result in a clean

video switch, because of discontinuities on packets contents affecting the decoding

process of the the media structure. However, to avoid glitches and big disruptions

on monitored video, the GOP structure can be adjusted. In video compression,

the concept of GOP (Group of Pictures) plays a crucial role, representing a set of

consecutive frames, of different types, that are encoded together as a unit.

I-frames (or keyframes) are reference frames that are encoded independently, with-

out relying on any other frame for decoding. They are complete pictures, containing

all the necessary information for the rendering process. Therefore, they have the

highest quality and size, serving as reference points for decoding subsequent frames

in the GOP.

58

P-frames stands for “predicted frame”, meaning they rely on previously en-

coded frames to forecast the content. B-frames are frames that can reference both

preceding and subsequent frames within the GOP (B standing for “bi-directional”).

Both take advantage of motion estimation and temporal redundancies to achieve

higher compression ratios.

The arrangement of these frames within a GOP is typically structured as shown

in figure 5.4. The specific configuration of GOP depends on the video codec and

its settings, directly affecting the trade-off between video quality and media size.

The GOP length (meaning distance between keyframes) may also impact smooth

playback of streamed content.

For this experiment, the encoder will be set to create only I-frames in each media

file, meaning a GOP with length equal to 1. This way, when a switch between

streams occurs, decoders on receiver side will take less time to recover from the

abrupt break in the video rendering process, as illustrated in figure 5.5.

I B B P B B P B B P B B I

Figure 5.4: Generic illustration of a typical GOP structure.

I I I I I I

I I I I I I

I I I I I I

STREAM 1

STREAM 2

I I I I I I

TIME

Figure 5.5: Adopted GOP structure for experimental streams, easing switching.

59

5.4.4 TS encapsulation

After the media is prepared, it must be wrapped into the MPEG-TS. The H.264

video essence shall occupy its own PID inside service 1, whilst space shall be reserved

in the multiplex for SCTE-35 markers. The additional space, when compared to

video bitrate, is to be filled with other TS tables and stuffing packets.

Each time a new TS packet needs to be injected into the stream, TSDuck plugins

waits for the next null packet and replaces it with the new packet. Same happens

when splice injection is requested, specially when using splice immediate mode, when

stuffing packets shall be replaced with the actual SCTE-35 cues as soon as possible.

Consequently, the original amount of stuffing and its distribution in a stream

directly influences the insertion profile of new packets, since it is not possible to

add more data than the stuffing bitrate. Moreover, precise timing cannot be always

achieved. In broadcast streams, where the modulation parameters impose a fixed

bitrate, there is always some stuffing [23].

Since there is no requirement for a global bitrate for the experiment, artificial

stuffing will be inserted at input level on media files using TSDuck plugins. Arbi-

trarily, encoding script has been set to add one null packet every 9 regular packets,

increasing total bitrate by approximately 10%.

Finally, the splice information table in the transport stream that carries SCTE-35

signaled events should be created using a common MPEG-TS stream type (0x86),

which identifies all PID streams containing this type of data. PID 600 in service 1

has been selected to transport our graphics metadata.

The bash script below has been developed to streamline the media creation process

and will be available in the project repository. It can be used to convert all files

within a specific source folder into the corresponding output TS media, ready to

be served over the network. Figure 5.6 presents the packet distribution over time

for one converted file, evaluated by DVB Inspector, a TS analyzer tool. It shows a

reasonably constant bitrate for the video essence, as desired.

60

1 #!/bin/bash

2

3 i=1;

4

5 for f in $(pwd)/../streams/source/*

6 do

7 ffmpeg -i $f -c:v libx264 \

8 -b:v 10M -minrate 10M -maxrate 10M -bufsize 5M \

9 -g 1 -s 1280x720 -r 30 -pix_fmt yuv420p -crf 1\

10 -tune zerolatency -movflags faststart+frag_keyframe+empty_moov \

11 -y tmp.ts \

12

13 tsp --verbose --add-input-stuffing 1/9 \

14 -I file tmp.ts \

15 -P pmt --service 1 --add-pid 600/0x86 \

16 -O file $(pwd)/../streams/stream$i.ts

17

18 i=$((i+1))

19 rm -f tmp.ts

20 done

Figure 5.6: Stream analysis showing no significant spikes on video bitrate (green).

61

5.5 Code development

5.5.1 Bundles architecture

In order to integrate the graphics assets, control channels, database and scripts,

a design pattern must be established, connecting modules inside NodeCG platform.

As previously mentioned, each NodeCG bundle is a smaller collection of files, tem-

plates and codes, created as a self-contained package encapsulating a set of graphics

or functionalities. They are loaded when NodeCG instance is initiated.

For the project, two bundles will be created: main and games. Main bundle, as

the name suggests, incorporates all major services for operating the graphic engine,

whether as a host or as replica generator. It will include modules for connecting

with the MongoDB database, language selection, channels for data exchange with

templates, OS calls for scripts and network sockets for sending SCTE notifications.

It also includes a web-page player, with the graphics output.

The other bundle is the actual graphic package, containing all elements for creating

a visual composition for both swimming and athletics content. It also includes small

dashboards for operational control and JavaScript code for data exchange with main

bundle. Each package comprises 3 assets, with in and out animations created using

HTML5 and CSS. Figure 5.7 illustrates the basic folder architecture.

GAMES

MAIN

DASHBOARD

control.html

program.html

GRAPHICS

player.html

GRAPHICS

player.html

STREAMS

/source

/injected

stream1.ts

stream2.ts

STREAMS

/source

/injected

stream1.ts

stream2.ts

EXTENSION

index.js

...

EXTENSION

index.js

...
SCRIPTS

converter.sh

SCRIPTS

converter.sh

DATA

config.json

credentials.json

DATA

config.json

credentials.json

GRAPHICS

startlist.html

venueId.html

GRAPHICS

startlist.html

venueId.html

athlete.html

schedule.html

GRAPHICS

startlist.html

venueId.html

athlete.html

schedule.html

DASHBOARD

swimming.html

athletics.html

DASHBOARD

swimming.html

athletics.html

GRAPHICS

startlist.html

venueId.html

athlete.html

schedule.html

DASHBOARD

swimming.html

athletics.html

Figure 5.7: NodeCG bundles architecture and code organization.

62

5.5.2 Operational modes

The experimental code shall be developed allowing combination of both opera-

tional modes for the graphics engine, which shall act as host, replica or both at the

same time. These settings directly affects which bash scripts and modules shall run

when NodeCG instance is initiated.

• Host mode — If enabled, the engine activates the splice injector plugin and

shall start listening for SCTE-formatted notifications in a designated network

port. Commands dispatched on the GUI shall trigger a process for decorating

the input stream accordingly, including assignment of an ID and insertion in

the database.

The output stream shall be addressed to an IP, and, optionally, might be

recorded back into a new TS file. The clean video can be played with low-

latency parameters, for monitoring purposes.

The equivalent script for streaming and injecting both swimming and athletics

content is presented below. The variables are to be filled with parameters in

the configuration file.

1 #!/bin/bash

2

3 echo Input control on IP $1, transmitting file on PATH $2

4 echo Listening SCTE notification on IP $3,

5 echo Recording file PATH $4 (if set), broadcasting on IP $5

6

7 tsswitch --remote $1 --fast-switch --buffer-packets 14

8 --max-input-packets 7 --max-output-packets 7 --verbose

9 -I fork ’tsp --verbose

10 -I file $2

11 -P regulate’

12 -O fork "tsp --verbose --realtime

13 -P spliceinject --service 1 --udp $3

14 -P fork ’tsp -O file $4’

15 -O ip $5"

63

• Replica mode — If replica mode is enabled, tsswitch plugin receives one or

more feeds. This is the TSDuck utility that allows jumping between multiple

MPEG-TS streams given as input parameters. The output stream is then

forwarded to a splice monitor plugin, which shall monitor any SCTE service

in the data flow and redirect notifications to an user-specified address.

Finally, the video feed is forwarded to an output IP, to be captured by the

system acting as a downstream keyer, which will finally mix the output graphics

with the selected feed.

The equivalent script to run in the replica engine is presented below. The

variables are to be filled with parameters in the configuration file.

1 #!/bin/bash

2

3 echo Feed switch control on IP $1

4 echo Receiving feeds on IPs $2 and $3, from IPs $4 and $5

5 echo Forwarding SCTE notification to IP $6

6 echo Recording file PATH $7 (if set), playing on IP $8

7

8 tsswitch --remote $1 --fast-switch --buffer-packets 14

9 --max-input-packets 7 --max-output-packets 7 --verbose

10 -I ip $2 --source $4

11 -I ip $3 --source $5

12 -O fork "tsp --verbose --realtime

13 -P splicemonitor --json-udp $6

14 -P fork ’tsp -O file $7’

15 -O ip $8"

• Host + Replica modes — If both modes are activated, the system will run

above mentioned modules in parallel. If there are no conflicts in IP addresses,

users shall be able to decorate the input clean feed with SCTE cue markers

while monitoring the graphic outcome at the same time. This single-device

operational mode should be avoided, unless observed enough computational

power.

64

5.5.3 Configuration file

All above mentioned modes and values can be modified in the config.json file,

located at the data folder inside main bundle directory. By default, host and replica

modes are enabled, with IPs and ports to avoid conflicts between all services (shown

below). Systems running the application should adjust the parameters accordingly.

1 {

2 "id": "PGM",

3 "tx": {

4 "mode": true,

5 "ipInjector": "127.0.0.1:5555"

6 },

7 "rx": {

8 "mode": true,

9 "ipMonitor": "127.0.0.1:4444"

10 },

11 "inputs":{

12 "ipSwitch":"127.0.0.1:2222",

13 "paths":[

14 {

15 "type": "file",

16 "path": "bundles/main/streams/stream1.ts"

17 },

18 {

19 "type": "file",

20 "path": "bundles/main/streams/stream2.ts"

21 }]

22 },

23 "output":{

24 "ipPlayer": "127.0.0.1:7777",

25 "recording": false,

26 "fileOutput": "bundles/main/streams/injected/stream1.ts"

27 }

28 }

65

5.5.4 Credentials file

To access the commands database, the user must provide the MongoDB cre-

dentials as per the structure below. The file should be saved as credentials.json,

alongside the configuration file. A private file has been created for testing purposes.

1 {

2 "db": "",

3 "collection": "",

4 "uri": ""

5 }

5.6 Results

5.6.1 System organization

The picture below shows the two stream generators (host) and the graphics re-

covery (replica), connected through the switch. The IPs have been assigned as in

the image, while internet link is provided to access the remote database instance.

SWIMMING (HOST)

192.168.1.20

ATHLETICS (HOST)

192.168.1.10

ENGINE (REPLICA)

192.168.1.30

INTERNET

ENGINE OUTPUT

Figure 5.8: Picture showing two stream generators and the GFX recovery system.

66

5.6.2 Interface

The operational interface of the engine, developed as a NodeCG dashboard, is

shown in Figure 5.9. On the left side, the engine control panel allows users to switch

between streams, select the language for rendering the messages (replica mode),

select the format of the graphic output and control the downstream keyer (if on or

off). The following panels are loaded along with the bundles and are used to control

the messages for each graphic package (swimming and athletics).

If the engine is operating as a host, commands sent using GUI buttons are trans-

lated onto SCTE notifications and injected into the clean feed. If the engine is

operating as a replica, received messages trigger a luminous notification, indicating

which operation is being mimetized (Figure 5.10).

Moreover, the graphics tab can be used to show all available templates built

(currently four) and which one is on air, if any (Figure 5.20). The system allows

more than one to be displayed at the same time if they are assigned to distinct

layers. There is virtually no limit to the number of layers that can be used.

Figure 5.9: Graphic interface of the engine, showing control panels and output.

67

Figure 5.10: Replica engine triggering a luminous indicator corresponding to the com-

mand received from the ancillary space.

Figure 5.11: Graphics tab showing templates loaded and which one is currently being

displayed (in green).

5.6.3 Database entries

The graphic messages have been filled with static test data and each template

has its corresponding set. The engine prepares both the SCTE notification and the

database entry with a randomly assigned ID for injection. The image below shows

the semantics of one of these entries.

68

Figure 5.12: Database entry, accessed directly in the MongoDB platform.

Each message in the database contains information about the template used, the

command triggered, layer, and the state of the downstream keyer if this has been

operated. Any of these fields can be easily edited by an authorized user.

Furthermore, each graphic element that makes up the visual piece can have equiv-

alent versions in other languages. To achieve this, the data of the component in

question is written as an array, where each index corresponds to a language. In the

project, it has been conventionally established that index 0 corresponds to English

(also used as fallback) and index 1 corresponds to Japanese.

69

5.6.4 Graphics messages

The images below showcase some of the rendered graphic pieces overlaid on the

video feed. This process is done in OBS scenes, which allows the overlay of the

graphical output (player.html) onto the video stream. The simulation also demon-

strates how the output would appear on mobiles with an aspect ratio of 2:3.

Figure 5.13: Startlist graphic, displayed in widescreen and English.

Figure 5.14: Startlist graphic, displayed in widescreen and Japanese.

70

By adjusting the parameters of the replica engine, multiple combinations of lan-

guages and output formats can be obtained. This demonstrates the system’s flex-

ibility, while synchronicity is maintained with a relatively simple apparatus on the

decoding side — based entirely on the video stream itself for triggering the arts.

Figure 5.15: Startlist graphic, displayed in adapted format for mobiles and Japanese.

Figure 5.16: Athlete ID graphic, displayed in widescreen and English.

71

Figure 5.17: Athlete ID graphic, displayed in widescreen and Japanese.

Figure 5.18: Athlete ID graphic, displayed in adapted format for mobiles and Japanese.

If the input signal is switched, the generator automatically starts capturing the

corresponding SCTE notifications, leading to the rendering of graphic compositions

for the new feed, as shown below. As expected, disruptions on the video decoding

process are minimal, but eventually perceptible.

72

Figure 5.19: Schedule graphic, displayed in widescreen and English.

Figure 5.20: Schedule graphic, displayed in adapted format for mobiles and Japanese.

Configuration file for OBS scenes used is placed at the data folder, in main bundle

directory. All code developed for the project, including the two SCTE-decorated

feeds can be found in the GitHub repository [35].

73

Chapter 6

Conclusions

This work described an alternative method for representing graphics assets, intro-

ducing a new approach for carriage of data and metadata embedded in the media

stream or using an external database. By separating the graphics essence from the

video content, it becomes possible to reprocess and adapt visual elements and in-

ner data for various applications, thereby creating new possibilities to enhance the

audience’s experience.

Chapters 2 and 3 delve into the analysis of current broadcast standards and pro-

tocols, providing readers with insights of workflows implemented by the industry,

particularly in large-scale sporting events. Special attention has been given to the

exploration of the ancillary data space, which emerges as the most logical resource

to be investigated within the scope of this work.

Furthermore, the proposal for using SCTE-35 and SCTE-104 protocols, as pre-

sented in Chapter 4, has shown to be potentially advantageous in light of the mech-

anisms for monitoring, injecting, and extracting these messages. Since these are

already established standards, current broadcast tools would be capable of support-

ing the implementation of the new workflow, whether in legacy SDI infrastructure

or in the latest IP-based workflows.

The experimental implementation tested the use of an external database with a

collection of editable commands and data sets, stored on a remote database instance.

Additionally, two media files were created and used to simulate a live broadcast.

74

It was possible to demonstrate some scenarios in which the use of message IDs

alone proved sufficient for retrieving graphic content. However, in more complex

compositions where fields and elements are updated rapidly, the adoption of an

alternative strategy becomes necessary.

In this regard, the use of standalone ancillary messages becomes an interesting

subject for investigation in future research. While the option of employing private

messages within the SCTE protocol exists, it is imperative to investigate how the

semantics of these messages would be structured and evaluate the feasibility of

implementing such a solution.

Finally, this work addressed key aspects of ANC message structure, traffic, and

transmission across real-time and transport infrastructures. This focus was given

due to the nature of the broadcast productions studied, in general live broadcasts

with multiple feeds.

However, the new approach did not explore the possibilities of optimization and

automation in other production workflows, particularly those focused on retrieving

edited or ingested content in digital media. This scenario is more prominent in

news and entertainment divisions, as well as in other platforms and channels with

on-demand content consumption.

To address this, it is crucial to elaborate and discuss mechanisms for transporting

messages in the ancillary data space (and consequently, the graphics essence) to

the file-based domain and vice versa. Future works can delve deeper into this topic

from the perspective of the guidelines defined by SMPTE 436M, which deals with

the mapping of VBI data into MXF media. By doing so, it will be possible to have

a new dimension of the proposal presented in this work, encompassing the entire

broadcast production chain and its major pillars.

75

Bibliography

[1] “ST 274:2008 - SMPTE Standard - Television — 1920 × 1080 Image Sample

Structure, Digital Representation and Digital Timing Reference Sequences for

Multiple Picture Rates”, ST 274:2008, pp. 1–35, 2008.

[2] SCOTT, B., “The Story of TV Graphics”, https://www.linkedin.com/

pulse/story-tv-graphics-scott-barber, 2016, (Access in October 2022).

[3] “Deafness and hearing loss”, https://www.who.int/news-room/

fact-sheets/detail/deafness-and-hearing-loss, 2021, (Access in

December 2022).

[4] OWENS, J., Television Sports Production. 5 ed. London, England, Routledge,

2015.

[5] SALAZAR, R., “File-Based Workflows in Broadcasting”, https://www.

broadcastbeat.com/file-based-workflows-in-broadcasting, 2021, (Ac-

cess in December 2022).

[6] DEVLIN, B., “MXF”, https://www.tvtechnology.com/news/mxf-262167,

2012, (Access in December 2022).

[7] “ST 292-1:2018 - SMPTE Standard - 1.5 Gb/s Signal/Data Serial Interface”,

ST 292-1:2018, pp. 1–20, 2018.

[8] TEKTRONIX, “A Guide to Standard and High-Definition Digital Video Mea-

surements”, https://download.tek.com/document/25W_14700_6.pdf, 2009,

(Access in October 2022).

76

https://www.linkedin.com/pulse/story-tv-graphics-scott-barber
https://www.linkedin.com/pulse/story-tv-graphics-scott-barber
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
https://www.broadcastbeat.com/file-based-workflows-in-broadcasting
https://www.broadcastbeat.com/file-based-workflows-in-broadcasting
https://www.tvtechnology.com/news/mxf-262167
https://download.tek.com/document/25W_14700_6.pdf

[9] “Core Insights: Advances in 12G-SDI”, ”https://www.aja.com/pdf/2020/

Core_Insights_Advances_In_12G_SDI.pdf”, 2020, (Access in December

2022).

[10] “From SDI to IP: The Evolution of Distribution”, https://www.smpte.org/

blog/sdi-ip-evolution-distribution, (Access in January 2023).

[11] “SMPTE ST 2022: Moving Serial Interfaces (ASI SDI) to IP”, https://www.

smpte.org/webcast/standards-smpte-st-2022, (Access in January 2023).

[12] “Professional Video, Audio and Data over IP”, https://www.smpte.org/

standards/st2110, (Access in January 2023).

[13] “ST 2110-10:2022 - SMPTE Standard - Professional Media over Managed IP

Networks: System Timing and Definitions”, ST 2110-10:2022, pp. 1–23, 2022.

[14] “ST 2110-20:2022 - SMPTE Standard - Professional Media over Managed IP

Networks: Uncompressed Active Video”, ST 2110-20:2022, pp. 1–23, 2022.

[15] “ST 2110-30:2017 - SMPTE Standard - Professional Media Over Managed IP

Networks: PCM Digital Audio”, ST 2110-30:2017, pp. 1–9, 2017.

[16] “ST 2110-40:2018 - SMPTE Standard - Professional Media Over Managed IP

Networks: SMPTE ST 291-1 Ancillary Data”, ST 2110-40:2018, pp. 1–8, 2018.

[17] EDWARDS, T., “RTP Payload for Society of Motion Picture and Television

Engineers (SMPTE) ST 291-1 Ancillary Data”, RFC 8331, , 2018.

[18] “ST 291-1:2011 - SMPTE Standard - Ancillary Data Packet and Space Format-

ting”, ST 291-1:2011, pp. 1–17, 2011.

[19] “ITU-R BT.1364-3 - Format of ancillary data signals carried in digital compo-

nent studio interfaces”, ITU-R BT.1364-3, , 2015.

[20] “ST 336:2017 - SMPTE Standard - Data Encoding Protocol using Key-Length-

Value”, ST 336:2017, pp. 1–36, 2017.

[21] “ISO/IEC 13818-1 - Generic coding of moving pictures and associated audio

information - Part 1: Systems”, ISO/IEC 13818-1, pp. 1–316, 2022.

77

https://www.aja.com/pdf/2020/Core_Insights_Advances_In_12G_SDI.pdf
https://www.aja.com/pdf/2020/Core_Insights_Advances_In_12G_SDI.pdf
https://www.smpte.org/blog/sdi-ip-evolution-distribution
https://www.smpte.org/blog/sdi-ip-evolution-distribution
https://www.smpte.org/webcast/standards-smpte-st-2022
https://www.smpte.org/webcast/standards-smpte-st-2022
https://www.smpte.org/standards/st2110
https://www.smpte.org/standards/st2110

[22] ESTRADA, C. R. D., “Analisador de stream de TV Digital para o padrão

ISDB-T”, Fevereiro 2008.

[23] TSDUCK, “MPEG Transport Stream Toolkit User’s Guide”, https://tsduck.

io/download/docs/tsduck.pdf, (Access in November 2022).

[24] “ST 2038:2021 - SMPTE Standard - Carriage of Ancillary Data Packets in an

MPEG-2 Transport Stream”, ST 2038:2021, pp. 1–7, 2021.

[25] “ANSI/SCTE 35 - Digital Program Insertion Cueing Message”, pp. 1–101, 2022.

[26] HELIKER, J., “SCTE 35 vs. 104 Explained”, https://www.linkedin.com/

pulse/scte-35-vs-104-explained-james-heliker/, 2021, (Access in Octo-

ber 2022).

[27] “ANSI/SCTE 104 - Automation System to Compression System Communica-

tions Applications Program Interface (API)”, pp. 1–125, 2022.

[28] “ST 2010:2008 - SMPTE Standard - Vertical Ancillary Data Mapping of AN-

SI/SCTE 104 Messages”, ST 2010:2008, pp. 1–11, 2008.

[29] “DPI Trigger Insertion: SCTE-104 and SCTE-35”, https://eegent.com/

support/resources/FAQs/DPITriggerInsertion:SCTE-104andSCTE-35,

2022, (Access in October 2022).

[30] “SCTE-35: Supplementary Information”, https://gridshot.net/features/

advertising-insertion/scte-35/supplementary-information, (Access in

January 2023).

[31] “SCTE-35 XML schema document”, http://www.scte.org/schemas/35, (Ac-

cess in January 2023).

[32] “9950-EMDE-ANC 3G/HD/SD-SDI Ancillary Data Embedder/De-

Embedder”, https://www.cobaltdigital.com/products/3011/

9950-emde-anc, (Access in January 2023).

[33] VIDEO, R., “Carbonite Black Setup: Ancillary Data”, ”https://help.

rossvideo.com/carbonite-02/Topics/Setup/Video/Anc.html”, 2023, (Ac-

cess in May 2023).

78

https://tsduck.io/download/docs/tsduck.pdf
https://tsduck.io/download/docs/tsduck.pdf
https://www.linkedin.com/pulse/scte-35-vs-104-explained-james-heliker/
https://www.linkedin.com/pulse/scte-35-vs-104-explained-james-heliker/
https://eegent.com/support/resources/FAQs/DPI Trigger Insertion: SCTE-104 and SCTE-35
https://eegent.com/support/resources/FAQs/DPI Trigger Insertion: SCTE-104 and SCTE-35
https://gridshot.net/features/advertising-insertion/scte-35/supplementary-information
https://gridshot.net/features/advertising-insertion/scte-35/supplementary-information
http://www.scte.org/schemas/35
https://www.cobaltdigital.com/products/3011/9950-emde-anc
https://www.cobaltdigital.com/products/3011/9950-emde-anc
https://help.rossvideo.com/carbonite-02/Topics/Setup/Video/Anc.html
https://help.rossvideo.com/carbonite-02/Topics/Setup/Video/Anc.html

[34] “JSON Databases Explained”, https://www.mongodb.com/databases/

json-database, (Access in January 2023).

[35] COUTO, G., “gcgen”, ”https://github.com/gdancouto/gcgen”, 2023, (Ac-

cess in June 2023).

79

https://www.mongodb.com/databases/json-database
https://www.mongodb.com/databases/json-database
https://github.com/gdancouto/gcgen

Appendix A

SCTE-35 adapted XML schema

1 <splice_information_table

2 protocol_version="uint8, default=0"

3 pts_adjustment="uint33, default=0"

4 tier="uint12, default=0xFFF">

5 <_any in="_metadata"/>

6 <!-- Splice commands, only one of them is allowed -->

7 <splice_null/>

8 <splice_schedule>

9 <!-- One per splice event -->

10 <splice_event

11 splice_event_id="uint32, required"

12 splice_event_cancel="bool, default=false"

13 out_of_network="bool, required when splice_event_cancel is false"

14 utc_splice_time="YYYY-MM-DD hh:mm:ss or uint32, required when

splice_event_cancel is false and program_splice_flag is to be set"

15 unique_program_id="uint16, required when splice_event_cancel is

false"

16 avail_num="uint8, default=0"

17 avails_expected="uint8, default=0">

18 <!-- Optional -->

19 <break_duration auto_return="bool, required" duration="uint33,

required"/>

80

20 <!-- One per component when splice_event_cancel is false and

utc_splice_time is not specified -->

21 <component component_tag="uint8, required"

utc_splice_time="YYYY-MM-DD hh:mm:ss or uint32, required"/>

22 </splice_event>

23 </splice_schedule>

24 <splice_insert

25 splice_event_id="uint32, required"

26 splice_event_cancel="bool, default=false"

27 out_of_network="bool, required when splice_event_cancel is false"

28 splice_immediate="bool, default=false"

29 pts_time="uint33, required when splice_event_cancel is false and

splice_immediate is false and program_splice_flag is to be set"

30 unique_program_id="uint16, required when splice_event_cancel is

false"

31 avail_num="uint8, default=0"

32 avails_expected="uint8, default=0">

33 <!-- Optional -->

34 <break_duration auto_return="bool, required" duration="uint33,

required"/>

35 <!-- One per component when splice_event_cancel is false and pts_time

is not specified -->

36 <component component_tag="uint8, required" pts_time="uint33, required

when splice_immediate is false"/>

37 </splice_insert>

38 <time_signal pts_time="uint33, optional"/>

39 <bandwidth_reservation/>

40 <private_command identifier="uint32, required">

41 Hexadecimal content

42 </private_command>

43 <!-- Splice descriptors, depend on splice command -->

44 <_any in="_descriptors"/>

45 </splice_information_table>

81

Appendix B

Cobalt Insertion Overview

 2021 Cobalt Digital Inc. All Rights Reserved. SCTE Insertion Methodologies (V1.0)

SCTE-104 / SCTE-35 Insertion Overview
and Methodologies Using Cobalt® Models

Cobalt Digital Inc. • 2506 Galen Drive • Champaign, IL 61821 USA • 1-217-344-1243 • www.cobaltdigital.com • support@cobaltdigital.com

Overview
SCTE-104 and SCTE-35 are standards that define protocols for ad insertion.

• SCTE-104 markers are placed on SDI baseband video
• SCTE-35 markers are placed in transport streams (compressed content)

The two standards are equivalent and have the same functionality – they just apply to different signal types. When appropriately licensed,
Cobalt® ancillary data injectors, frame syncs, and cross-converters have the ability to place SCTE-104 markers on SDI baseband video.
Cobalt® encoders can convert SCTE-104 within inputed SDI to SCTE-35 in the transport streams, and Cobalt® decoders can perform the
inverse operation extracting SCTE-35 and embedding SCTE-104 in the outputed SDI.

Methods for Signaling Injection of SCTE Messages
The Cobalt® devices that provide SCTE ad insertion support all need some sort of signaling from an outside traffic system to inject the
SCTE messages at the desired time in the program content. The methodology options for this type of signaling are:

1. Manual Insertion by an operator. All the message parameters are manually entered in the GUI, and a button is pressed to cause the
insertion. The Cobalt® proprietary Reflex protocol can be used to automate this.

2. Automated Insertion Using GPIO. All the message parameters are pre-defined, and a GPI triggers insertion. This type of insertion
is useful for “hard breaks” where insertion of interstitials is fully automated.

3. Using the Cobalt® Proprietary XML Interface. This allows for frame-accurate insertion, based on timecode or UTC time, or
immediate injection in a low-latency network.

4. Using the Standard SCTE-104 over TCP Interface. This allows for frame-accurate insertion, based on timecode, or immediate
injection in a low-latency network.

Methods 1 and 2 are accommodated by the +SCTE104 license. These methods are intended for use in simpler setups, where frame
accuracy is not required, and the contents of the marker message are static and known ahead of time. Many traffic systems have GPIO
interfaces for this purpose.

Methods 3 and 4 are accommodated by the +SCTE104-FAST license (which also accommodates methods 1 and 2). These methods are
intended for situations where the contents of the marker message change dynamically, and/or frame accuracy is required. The support
for SCTE-104 over TCP makes the equipment compatible with any standard traffic system, without the need for custom development.

Methods 1 thru 4 are available in a number of Cobalt® baseband video processors, and result in a SCTE-104 message being inserted in
the output SDI signal. If SCTE-35 is required, an encoder can be added to the workflow to convert a SCTE-104 message to SCTE-35 in
the transport stream. Conversion of SCTE-104 over SDI to SCTE-35 is a standard feature in Cobalt® encoders.

If there is a need to signal the insertion directly at the encoder, without using a baseband video processor, Cobalt® encoders will support
method 4 above. This requires the optional +SCTE104-TCP optional license (this license is subject to future availability and is currently
pending).

82

	Introduction
	Motivation
	Organization

	Production Workflow
	Broadcast stages
	Real-time infrastructure
	File-based systems
	Transport layer
	Overview

	Graphics
	Types of graphics
	Graphics engine

	Case study
	Major multi-feed events
	Topology drawbacks
	Overview

	Standards Review
	SDI interface
	Video components
	Data format
	SDI evolution
	Migration to IP
	Ancillary data structure
	Overview

	MPEG-2 Transport Stream
	Stream structure
	Packet composition

	SCTE-35/104 Standards
	Splice points and events
	Normative schema
	Splice commands
	Injection principles
	Overview

	Novel Proposal
	Introduction
	Engines redefined
	Domain
	Template library
	Notification format
	GFX command ID
	Standalone mode

	Ancillary manipulators
	Scenarios
	Multi-language graphics
	Adapted video formats

	Experimental Implementation
	Introduction
	Methodology
	Tools and material
	Hardware
	TSDuck utilities
	NodeCG platform
	MongoDB
	Open Broadcaster Software
	FFmpeg

	Environment setup
	Relevant aspects
	Network
	Media preparation
	TS encapsulation

	Code development
	Bundles architecture
	Operational modes
	Configuration file
	Credentials file

	Results
	System organization
	Interface
	Database entries
	Graphics messages

	Conclusions
	Bibliography
	SCTE-35 adapted XML schema
	Cobalt Insertion Overview

