

Universidade Federal do Rio de Janeiro Escola Politécnica Programa de Projeto de Estruturas

Maxwell Araujo Antunes

METODOLOGIA DE CALIBRAÇÃO DOS PARÂMETROS DAS DISTRIBUIÇÕES DE LONGO PRAZO DE TENSÕES PARA ANÁLISE DE FADIGA DE ESTRUTURA MARÍTIMA

UFRJ

Maxwell Araujo Antunes

METODOLOGIA DE CALIBRAÇÃO DOS PARÂMETROS DAS DISTRIBUIÇÕES DE LONGO PRAZO DE TENSÕES PARA ANÁLISE DE FADIGA DE ESTRUTURA MARÍTIMA

Dissertação de Mestrado apresentada ao Programa de Projeto de Estruturas, Escola Politécnica, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Projeto de Estruturas.

> Orientadores: Bruno Martins Jacovazzo Fernando Jorge Mendes de Sousa

> > Rio de Janeiro 2023

Antunes, Maxwell Araujo

Metodologia de Calibração dos Parâmetros das Distribuições de Longo Prazo de Tensões para Análise de Fadiga de Estrutura Marítima / Maxwell Araujo Antunes – 2023.

157.: 30 cm.

Dissertação (Mestrado em Projeto de Estruturas) – Universidade Federal do Rio de Janeiro, Escola Politécnica, Programa de Projeto de Estruturas, Rio de Janeiro, 2023.

Orientadores: Bruno M. Jacovazzo, Fernando Jorge Mendes de Sousa

Fadiga, 2. Parâmetros de Weibull, 3. Calibração, 4. II.
 Universidade Federal do Rio de Janeiro. Escola Politécnica. III.
 Programa de Projeto de Estruturas - PPE

METODOLOGIA DE CALIBRAÇÃO DOS PARÂMETROS DAS DISTRIBUIÇÕES DE LONGO PRAZO DE TENSÕES PARA ANÁLISE DE FADIGA DE ESTRUTURA MARÍTIMA

Maxwell Araujo Antunes

Orientadores: Bruno Martins Jacovazzo Fernando Jorge Mendes de Sousa

Dissertação de Mestrado apresentada ao Programa de Projeto de Estruturas, Escola Politécnica, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Mestre em Projeto de Estruturas.

Aprovada pela Banca:

Prof. Eng. Bruno Martins Jacovazzo, D. Sc., UFRJ

Prof. Eng. Fernando Jorge Mendes de Sousa, D. Sc., UFRJ

Prof. Eng. Gilberto Bruno Ellwanger, D. Sc., UFRJ

Eng. Carlos Alberto Bardanachvili, D. Sc., UFRJ

Rio de Janeiro 2023

"Do not pray for easy lives, pray to be stronger men."

John F. Kennedy

AGRADECIMENTOS

A Deus. Sem Ele não teria chegado até aqui.

À minha família.

Aos meus orientadores, pela valiosa contribuição, paciência e ensinamentos.

Aos amigos Bardana e Rodrigo Nassur, pelas sugestões e auxílios prestados.

A todos os professores da Escola Politécnica da UFRJ que ministraram aula no PPE, em especial aos professores Gilberto Ellwanger, Ricardo Valeriano e Sérgio Hampshire.

Ao meu gato Bilbo, por me atrapalhar nos momentos de maior concentração.

RESUMO

ANTUNES, Maxwell Araujo. **Metodologia da Calibração dos Parâmetros das Distribuições de Longo Prazo de Tensões para Análise de Fadiga de Estrutura Marítima.** Rio de Janeiro. 2023. Dissertação (Mestrado) – Programa de Projeto de Estruturas, Escola Politécnica, Universidade Federal do Rio de Janeiro. Rio de Janeiro. 2023.

Neste trabalho, são realizadas análises de fadiga para uma estrutura de módulo de FPSO utilizando as abordagens simplificada e espectral, com objetivo de apresentar as metodologias de calibração reversa e direta dos parâmetros da distribuição de longo prazo de Weibull. As incertezas associadas aos danos por fadiga obtido pelo método simplificado, devido à seleção de parâmetros de Weibull excessivamente conservadores, sugerem a necessidade de uma investigação mais aprofundada, com vista a obter valores mais próximos da realidade. Para atingir este objetivo, são apresentados os principais prérequisitos conceituais para compreensão dos aspectos relacionados à fadiga, incluindo: estatística de processos aleatórios, hidrodinâmica e teoria de ondas oceânicas. Ao final, são apresentados os resultados obtidos com as calibrações, onde é feita uma comparação e uma análise de dados, aplicadas a um estudo de caso de uma estrutura de módulo. A ideia é que, ao adotar valores de parâmetros Weibull mais realistas, há a possibilidade de ganhos em termos de resultado e de tempo de análise.

Palavras-chave

Fadiga espectral, fadiga simplificada, calibração reversa e calibração direta.

ABSTRACT

ANTUNES, Maxwell Araujo. **Methodology for Calibrating the Parameter of Long-Term Stress Distributions for Fatigue Analysis of Marine Structures.** Structure Design Program, Polytechnic School, Rio de Janeiro Federal University. Rio de Janeiro. 2023.

This work presents fatigue analyses for a FPSO module structure using the simplified and spectral approaches, with the aim of presenting the reverse and direct calibration methods of the long-term Weibull distribution parameters. The uncertainties associated with the fatigue damage obtained by the simplified method, due to the selection of overly conservative Weibull parameters, suggest the need for further investigation to obtain values closer to reality. To achieve this goal, the main conceptual prerequisites for understanding fatigue-related aspects are presented, including: random process statistics, hydrodynamics, and ocean waves theory. Finally, the results obtained with the calibrations are presented, where a comparison and data analysis are made, applied to a case study of a module structure. The idea is that by adopting more realistic Weibull parameter values, there is a possibility of gains in terms of results and analysis time.

Key Words

Spectral fatigue, simplified fatigue, reverse calibration, and direct calibration.

SUMÁRIO

1.	INTE	NTRODUÇÃO1					
	1.1.	Contexto e Motivação	. 1				
	1.2.	Objetivo	. 2				
	1.3.	Organização do Texto	. 2				
2.	PLA	TAFORMA DO TIPO FPSO	. 5				
	2.1.	Descrição Geral	. 5				
	2.2.	Componentes Estruturais	. 6				
	2.3.	Tipos de Carregamentos	. 8				
		2.3.1. Cargas Permanentes	. 9				
		2.3.2. Sobrecargas Funcionais	. 9				
		2.3.3. Carregamento Inercial de Ondas	. 9				
		2.3.4. Carregamento de Vento	. 9				
		2.3.5. Deflexão da Viga-Navio	10				
	2.4.	Condições de Carregamentos	10				
3.	CON	ONCEITOS DE ESTATÍSTICA					
	3.1.	Definição de Variáveis Aleatórias	12				
	3.2.	Funções de Probabilidade	13				
		3.2.1. Distribuição Cumulativa	13				
		3.2.1. Densidade de Probabilidade	14				
		3.2.2. Parâmetros da Variável Aleatória	16				
	3.3.	Tipos de Distribuições de Probabilidade	18				
		3.3.1. Distribuição de Gauss	18				
		3.3.2. Distribuições de Weibull	19				
		3.3.3. Distribuição de Rayleigh	21				
4.	PRO	CESSOS ESTOCÁSTICOS	23				
	4.1.	Definição e Conceitos	23				
	4.2.	Processo Estacionário	25				
	4.3.	Processo Ergódigo	26				
	4.4.	Análise Espectral	27				
		4.4.1. Momentos Espectrais e Largura de Banda	28				
5.	5. ONDAS REGULARES						
5.1. Parâmetros da Onda							

	5.2.	Potencial de Velocidade				
	5.3.	Características das Partículas de Água	35			
	5.4.	Relação de Dispersão	36			
	5.5.	Energia de Onda	37			
6.	OND	AS IRREGULARES	38			
	6.1.	Conceitos Iniciais	38			
	6.2.	Espectro de Mar	39			
	6.3.	Propriedades Estatísticas da Onda	43			
		6.3.1. Altura Significativa de Onda	45			
		6.3.2. Média Quadrática das Alturas	46			
		6.3.3. Períodos Médios de Onda	46			
		6.3.4. Distribuição de Probabilidades de Altura de Onda	47			
	6.4.	Espectros Padronizados	48			
		6.4.1. Espectro de Pierson-Moskowitz (P-M)	48			
		6.4.2. Espectro de JONSWAP	50			
		6.4.3. Espectro de JONSWAP Modificado	51			
7.	UNII	DADE FLUTUANTE NO MAR	52			
	Movimentos de Corpo Rígido	52				
	7.2.	Função de Transferência ou RAO	57			
	7.3. Forças Inerciais					
	7.4.	Respostas de Curto Prazo e de Longo Prazo	61			
8. FADIGA			65			
	8.1.	Conceituação Básica e Tópicos de Mecânica da Fratura	65			
	8.2.	Curvas SN	67			
	8.3.	Conceito de Dano e Vida à Fadiga	71			
	8.4. Fator de Fadiga		72			
	8.5.	Influência da Espessura	73			
	8.6.	Efeito de Desalinhamento	73			
		8.6.1. Solda de Topo com Chapas de Mesma Espessura	74			
		8.6.2. Solda de Topo com Chapas de Diferentes Espessuras	74			
	8.7.	Tensões Para o Cálculo de Fadiga	75			
		8.7.1. Tipos de Tensões	75			
		8.7.2. Descrição das Tensões	77			
		8.7.3. Obtenção da Tensão de <i>Hot Spot</i>	79			

8.8	8. Cálo	Cálculo do Dano por Fadiga: Método Simplificado				
8.9	9. Cálo	Cálculo do Dano por Fadiga: Método Espectral				
8.1	10. Cali	bração dos Parametros de Longo Prazo	89			
	8.10).1. Calibração Reversa	89			
	8.10).2. Calibração Direta				
9. ES	STUDO	DE CASO				
9.1	1. Des	crição Geral e Dados Iniciais				
9.2	2. Moo	delo Estrutural				
9.3	3. Aná	lise de Fadiga Estocástica do Módulo				
	9.3.	1. Função de Transferência do FPSO				
	9.3.	2. Estados de Mar	101			
	9.3.	3. Cruzamento Espectral e Resultado do Dano				
9.4	4. Aná	ilise de Fadiga Simplificada do Módulo	109			
	9.4.	1. Casos de Carga e Forças Inerciais	109			
	9.4.	2. Parâmetros de Fadiga	111			
	9.4.	3. Resultado de Dano	111			
9.5	5. Res	ultados da Calibração Reversa	113			
9.6	6. Res	ultados da Calibração Direta	115			
	9.6.	1. Junta J006				
	9.6.	2. Todas as Juntas				
9.7	7. Infl	uência das Curvas SN na Calibração Reversa	121			
10.	CO	NCLUSÕES				
10	.1. Ava	liação dos Resultados				
	10.1	.1. Comentários da Calibração Reversa				
	10.1	.2. Comentários da Calibração Direta	125			
	10.1	.3. Comentário sobre a Influência da Curva SN	127			
10	.2. Rec	omendações para Trabalhos Futuros				
11.	BIB	LIOGRAFIA	129			
ANEXO A – LISTAGEM COM RESULTADOS GERAIS 1						
ANE	XO B –	IDENTIFICAÇÃO DAS JUNTAS NO MODELO				

1. INTRODUÇÃO

1.1.Contexto e Motivação

A análise de prevenção contra o fenômeno de fadiga é uma das principais etapas de projeto de estruturas marítimas. Ao longo da vida útil operacional de uma plataforma de petróleo, as estruturas ficam submetidas a diferentes magnitudes de ciclo de tensões que variam no tempo, causadas por ações ambientais de ondas, de ventos e de correntes marinhas que precisam ser cuidadosamente avaliadas de modo a garantir a segurança da unidade de produção.

A análise de fadiga pode ser realizada pelo método simplificado ou pelo método espectral, conforme previsto nas regras de sociedades classificadoras. A abordagem simplificada é, em geral, utilizada nas fases iniciais do projeto e possui o termo "simplificada" porque utiliza uma tensão de referência para montar a distribuição de tensões no longo prazo com parâmetros previamente calibrados. O método espectral é um método direto e geralmente mais preciso. Requer a manipulação de diversos dados de estados de mar e do comportamento dinâmico da unidade flutuante, necessitando do emprego de *softwares* específicos, com aplicação teórica mais complexa.

Uma parte crucial da análise de fadiga é a definição dos parâmetros estatísticos da distribuição probabilística de Weibull para utilização na abordagem simplificada. Na prática de projeto, muitas empresas de engenharia utilizam esta metodologia como critério de avaliação das estruturas de módulos, evitando, dessa forma, a abordagem espectral.

Na análise de fadiga simplificada, a distribuição de tensões na estrutura no longo prazo é estimada através da função probabilística de Weibull. Tal como qualquer outra função probabilística, a distribuição de Weibull depende de parâmetros estatísticos, neste caso específico: o parâmetro de forma e o parâmetro de escala. A partir desses parâmetros é obtida a função de distribuição e, consequentemente, a probabilidade de ocorrência ou de excedência das tensões na estrutura, permitindo estimar o valor do dano à fadiga através de uma formulação fechada.

Os parâmetros de Weibull podem ser definidos através de processos de calibração ou podem ser estimados a partir de valores indicados por regras de sociedades classificadoras. Contudo, ao utilizar os valores propostos por regras, observa-se, em geral, uma grande incerteza e certo conservadorismo nos resultados. Por este motivo, faz-se necessário conhecer metodologias disponíveis para calibração dos parâmetros de Weibull, sendo a principal motivação do presente trabalho.

Também faz parte da contextualização, reconhecer a contribuição de trabalhos anteriores no campo da fadiga estrutural em unidades marítimas. Nesse sentido, pode-se destacar algumas dissertações relevantes que abordam aspectos diversos sobre tema relacionado à fadiga e que fornecem complemento e ganho de solidez na compreensão dos conteúdos tratados na presente dissertação. Por esse motivo, recomenda-se a leitura de BATALHA (2009), SOUZA (2014) e ENCARNAÇÃO (2018), conforme listado na bibliografia.

1.2.Objetivo

O objetivo desta dissertação é apresentar metodologias para calibração dos parâmetros de Weibull com base nos resultados de análises de fadiga simplificada e estocástica, para juntas soldadas de módulos de *topside* em plataformas do tipo FPSO. O estudo visa identificar valores mais precisos para os parâmetros, de modo a aumentar o grau de confiabilidade e reduzir o conservadorismo nos resultados obtidos pela análise de fadiga simplificada.

Neste documento, são apresentados vários conceitos relativos à fadiga, de modo a garantir o completo entendimento do processo de calibração. As ideias aqui dispostas podem ser aplicadas a estruturas semelhantes e até mesmo aprimoradas em estudos futuros.

1.3. Organização do Texto

Os capítulos da dissertação estão organizados de forma sequencial, de modo a permitir o entendimento dos conceitos relacionados às análises de fadiga de estruturas marítimas e, principalmente, ao processo de calibração dos parâmetros de Weibull.

O Capítulo 2 contém uma breve descrição geral de uma plataforma flutuante, com ênfase nos aspectos estruturais. Também são apresentados os tipos de carregamentos possíveis de ocorrer em unidade marítimas de produção de petróleo.

2

No Capítulo 3, são apresentados conceitos de estatística aplicados exclusivamente a variáveis aleatórias contínuas e os parâmetros estatísticos associados a elas. Além disso, são apresentadas as principais funções de probabilidade mais utilizadas nas análises de fadiga de estruturas marítimas, bem como conceitos relacionados às ondas oceânicas.

No Capítulo 4, são apresentados conceitos relativos a processos estocásticos aplicáveis a variáveis aleatórias dependentes do tempo. Discute-se a importância de processos estacionários e ergódigos, assim como conceitos relacionados à análise espectral e aos parâmetros estatísticos fundamentais que são base para entendimento do comportamento estatístico de mares irregulares.

Visando proporcionar conhecimento necessário para entender os conceitos de mares aleatórios, no Capítulo 5, são apresentados conceitos de onda regular. Embora as ondas reais possuam características aleatórias, o estudo das ondas regulares é requisito fundamental para uma compreensão completa dos conceitos aplicados.

No Capítulo 6, são abordados os conceitos da representação do mar através de seu espectro energético, as principais propriedades estatísticas de ondas irregulares e como as mesmas são obtidas. Além disso, são listados os espectros de mar padronizados que são majoritariamente utilizados na área marítima, principalmente o espectro de mar utilizado na costa brasileira.

O Capítulo 7 discorre sobre os movimentos da unidade flutuante quando a mesma está submetida ao efeito de ondas e o processo de obtenção da função de transferência. Fala-se também acerca das forças inerciais que são geradas em consequência do movimento dinâmico da embarcação. Igualmente, é feita uma abordagem e explicação sobre a diferença entre análises de curto e de longo prazo.

No Capítulo 8, é introduzido o tema de fadiga onde são abordados aspectos mais relevantes para compreensão das análises. São apresentadas uma base introdutória de mecânica da fratura e da metodologia de curvas SN. Fala-se sobre o cálculo de dano, incluindo a fórmula fechada para o método simplificado e para o método estocástico. Nesse mesmo capítulo, explica-se de forma detalhada o processo de calibração direta e reversa, sendo o objetivo principal desta dissertação.

No Capítulo 9, é apresentado o estudo de caso com todas as análises realizadas e os resultados obtidos, visando a aplicação de todos os conceitos descritos nos capítulos

anteriores. São apresentados os resultados da calibração reversa, da calibração direta e ainda a influência nos resultados de calibração reversa causado pela alteração da curva SN empregada.

No Capítulo 10, por fim, são apresentados os comentários, as análises e as conclusões sobre os resultados obtidos no Capítulo 9. Além disso, são sugeridos temas para trabalhos futuros, visando continuidade e maior aprofundamento no assunto.

2. PLATAFORMA DO TIPO FPSO

2.1. Descrição Geral

Uma plataforma do tipo FPSO (*Floating Production Storage and Offloading*) é um tipo de unidade estacionária de produção que tem capacidade de pré-processamento, armazenamento e transbordo de petróleo. Normalmente, opera em regiões de águas profundas e ultra profundas onde o emprego de plataformas fixas seria antieconômico ou impraticável. Embora não seja simples, também pode ser redirecionada de um campo de produção para outro, tornando uma opção econômica para a produção de petróleo em campos de exploração que possuem vida útil limitada. A Figura 2.1 mostra uma foto de uma unidade do tipo FPSO que opera em águas brasileiras.

Figura 2.1- FPSO (fonte: https://commons.wikimedia.org, Marinha do Brasil)

O FPSO é um sistema de produção flutuante que possui formato de navio (*ship-shaped*), que recebe petróleo bruto de poços produtores localizados no fundo do mar, acoplados à plataforma através de dutos horizontais (*flowlines*) e dutos suspensos (*risers*).

Na planta de produção, o petróleo bruto é processado, onde, basicamente, são separados o gás natural, a água e outras diversas impurezas e/ou contaminantes contidos no óleo. O gás produzido pode ser tratado e reutilizado na própria geração elétrica do FPSO, com auxílio, por exemplo, de turbogeradores. Também pode ser exportado através

de gasodutos, ou injetado no campo de produção e/ou pode, ainda, ser descartado na atmosfera através de queima controlada.

A água produzida pode ser injetada no campo produtor com objetivo de aumentar a recuperação do reservatório ou descartada diretamente no mar. A água produzida também passa por tratamento químico para enquadramento de requisitos técnicos impostos por organismos de controle ambiental. Ou seja, a água não pode ser lançada diretamente no mar sem o devido tratamento, tendo em vista impactos na natureza.

O petróleo fica contido nos tanques de armazenamento do FPSO e, na sequência, é descarregado para navios aliviadores que terão a função de transportar o óleo para uma instalação em terra ou para o mercado consumidor no exterior.

A garantia de posicionamento do FPSO na região de produção é dada pelo sistema de linhas de ancoragem, onde uma das extremidades de cada linha fica conectada à plataforma, especificamente no balcão de ancoragem, e a outra extremidade no leito marinho em âncora. Esse tipo de sistema de fixação é chamado de *spread mooring*.

2.2. Componentes Estruturais

Em termos estruturais, o FPSO pode ser dividido em dois grandes grupos, quais sejam o casco (*hull*) e o conjunto de módulos que compõe a planta de processamento (*topside*). O casco é a estrutura principal do FPSO que tem a função de garantir a flutuabilidade, a resistência global e o armazenamento de fluidos nos tanques. As estruturas localizadas no *topside*, por sua vez, têm a finalidade de suportar toda a planta de processamento primário de petróleo, ficando apoiadas diretamente sobre o convés da unidade, e, por consequência, sujeitas aos carregamentos dinâmicos oriundos das ondas e dos ventos.

O casco do FPSO pode ser inteiramente construído (*new building*), a partir de um projeto originário, ou pode ser adaptado a partir de um navio existente (usualmente, navios do tipo VLCC – *Very Large Crude Carrier*), num projeto chamado de conversão. No processo de construção, o casco é fabricado e montado em estaleiros de grande porte com utilização de chapas metálicas adquiridas de usinas de aço. As chapas são recortadas e soldadas entre si, compondo, assim, a forma final do casco. Já no processo de conversão é realizada uma adaptação em um navio com a finalidade de transformá-lo em uma

unidade flutuante de produção. Em outras palavras, o processo de conversão consiste na "reforma" de um navio antigo, onde são realizados diversos serviços de reparo e de substituição de chapas existentes por chapas novas, tendo como base as condições de corrosão preexistentes e os resultados obtidos na reavaliação estrutural, incluindo a avaliação de dano pregresso à fadiga.

Em geral, o casco convertido possui formato curvo tanto na popa quanto na proa, compatível com o navio utilizado para navegação. Por outro lado, no casco construído, esse formato usualmente é dispensável, uma vez que a unidade ficará ancorada na região da produção. A Figura 2.1 é um exemplo de FPSO convertido.

Usualmente, as fundações dos módulos de *topside* são definidas através de dois tipos: fundação sobre *stools* ou fundação sobre multicolunas, conforme ilustrado na Figura 2.2 e na Figura 2.3, respectivamente.

Os *stools* são pilares robustos com seção cruciforme, composto por chapas, que são fixados diretamente no convés da plataforma, na região das cavernas, e suportam os módulos. Sobre os *stools* são colocados aparelhos de apoio que visam reduzir os efeitos de flexão da viga navio nas estruturas do *topside*, por ação de apoios deslizantes que liberam a translação e a rotação até um determinado limite. Em geral, a quantidade de *stools* fica em torno de 4 a 6 por módulo.

Figura 2.2- Módulo sobre Stools

A concepção tipo multicolunas, por sua vez, compreendem estruturas mais delgadas, compostas por várias colunas e contraventamentos. Elas também são fixadas

no convés da plataforma e oferecem suporte aos módulos. As multicolunas, em geral, são fixadas no casco e nas estruturas do *topside* através de chapas *gusset* que possuem objetivo semelhante aos aparelhos de apoio, permitindo, neste caso, a rotação elástica da seção transversal da coluna na direção fora do plano da chapa *gusset*. As rotações devem permanecer no regime elástico de modo a evitar análises mais aprofundadas com emprego de metodologia de fadiga de baixo ciclo.

Figura 2.3- Módulo sobre Multicolunas

A escolha entre *stool* ou multicolunas depende das especificações técnicas da plataforma e das necessidades do arranjo da planta de processo requerida para o projeto. Ambos os métodos de suporte têm suas vantagens e desvantagens. A quantidade de suportes do tipo *stool* é menor quando comparada à solução do tipo multicolunas. Por consequência, as reações pontuais transmitidas para o casco são superiores às das multicolunas, requerendo, neste caso, maiores reforços na região de apoio. Se o objetivo for evitar reforços, principalmente em casos de navios convertidos, a solução com *stools* não se mostra vantajosa, pois provavelmente exigiria troca de grande quantidade de chapeamento no navio existente. Sob este aspecto estrutural, ainda pensando no processo de conversão, a solução ideal seria o emprego de solução em multicolunas. Isso porque permite maior redistribuição das cargas, fazendo com que as forças pontuais aplicadas na fundação sejam menores do que as dos *stools*.

2.3. Tipos de Carregamentos

Os módulos que compõem a planta de processo estão sujeitos a diversos tipos de carregamentos de natureza estática e dinâmica. Os carregamentos estáticos são gerados

pela ação da força gravitacional e os carregamentos dinâmicos são produzidos, majoritariamente, pela ação de forças ambientais, tais como ventos e ondas. A seguir, são apresentadas as descrições dos principais carregamentos que precisam ser considerados num projeto de módulos.

2.3.1. Cargas Permanentes

A definição de cargas permanentes se refere ao conjunto de carregamentos que atua na estrutura decorrentes do peso próprio da estrutura, do peso de equipamentos, do peso de tubulações e do peso de qualquer outro item permanente fixado ao módulo. Essas cargas atuam ao longo da vida útil da plataforma e devem ser cuidadosamente avaliadas e monitoradas na fase de projeto. Fatores de incerteza relativos à estimativa dos pesos são aplicados nos carregamentos, podendo variar de acordo com o estágio do projeto.

2.3.2. Sobrecargas Funcionais

As cargas funcionais são variáveis em termos de posição e magnitude. Elas incluem, entre outras, as cargas de armazenamento/estocagem, a carga de rota de fuga e a carga de manutenção. Os valores de referência destas cargas são geralmente definidos por normas/regras de sociedades classificadoras e/ou por especificações internas da empresa petroleira.

2.3.3. Carregamento Inercial de Ondas

As cargas ambientais são assim denominadas porque são provocadas por agentes da natureza. As ondas geram movimentos na plataforma que se traduzem em acelerações nas estruturas do *topside*, criando, por consequência, forças inerciais. Desse modo, as massas referentes as cargas permanentes e sobrecargas funcionais são aceleradas, gerando componentes de forças de inércia em diferentes direções lineares.

Os valores de aceleração utilizados no dimensionamento estrutural dos módulos são extraídos do resultado da análise do comportamento dinâmico da unidade flutuante.

2.3.4. Carregamento de Vento

Os carregamentos de vento são gerados pela incidência direta sobre as estruturas dos módulos. Através de dados relativos à velocidade do vento, são calculadas pressões

que atuam nas estruturas, levando em conta a área total obstruída e a geometria do obstáculo.

Dados de vento são definidos em campanhas de medição ou de acordo com dados meteoceanográficos da região. As velocidades de vento são normalmente fornecidas a uma altura padrão de 10 metros medida a partir da linha de água e precisam ser corrigidas para a elevação desejada, levando em conta a altura do módulo e a borda livre do navio com o tanque carregado na condição de calado mínimo.

O efeito dinâmico do vento nas estruturas dos módulos, em geral, é desconsiderado. No entanto, para estruturas mais esbeltas, como é o caso da torre do *flare*, precisa ser cuidadosamente avaliado.

Vibração induzida por vórtice (VIV) em membros tubulares expostos diretamente a ação do vento também precisa ser avaliada nas fases de projeto, inclusive na etapa de transporte das estruturas sobre balsas.

2.3.5. Deflexão da Viga-Navio

As estruturas que ficam apoiadas no convés da plataforma ficam sujeitas a deslocamentos e/ou rotações induzidos pela deflexão do casco. Mesmo em condição estática de águas calmas (*still water*), haverá deflexão da viga navio devido à distribuição de peso e ao empuxo exercido na porção submersa. As ondas, por sua vez, ao incidirem na embarcação, geram deflexões dinâmicas em virtude da variação do posicionamento da crista e do cavado ao longo do comprimento do casco. Ambos efeitos de deslocamento, estático e dinâmico, são considerados nas análises estruturais dos módulos, por meio de aplicação de translações e rotações nos apoios.

2.4. Condições de Carregamentos

A intensidade das cargas ambientais está ligada a duas principais condições climáticas que podem atuar nas estruturas, quais sejam a condição operacional e a condição extrema.

A condição operacional se caracteriza por uma condição moderadamente severa que não necessariamente precisa ser limitante a ponto de requerer a parada da operação.

É uma condição de projeto em que as ações ambientais estão tipicamente associadas a um período de retorno de um ano.

A condição extrema, por sua vez, é definida como a condição ambiental extrema que a estrutura pode enfrentar com período de retorno de 100 anos. Ela também é usada para avaliar a segurança da estrutura em relação a condições ambientais extremas que podem ocorrer em situações mais raras.

Além das condições acima descritas, outras formas de carregamentos são consideradas num projeto de módulo de *topside*, dentre as quais pode-se citar: carregamentos de eventos acidentais, carregamentos gerados na fase de construção, de içamento e de transporte de módulos, etc.

No contexto desta dissertação, são tratadas apenas as parcelas dinâmicas dos carregamentos inerciais das ondas, uma vez que são responsáveis pela variação de tensões nas estruturas e caracterizam a condição de fadiga.

3. CONCEITOS DE ESTATÍSTICA

As teorias aplicadas às ondas oceânicas requerem utilização de diferentes elementos de estatística e probabilidade. Por esse motivo, é necessário dar uma referência introdutória a estes conceitos, antes de se aprofundar no tema de ondas marítimas.

Grande parte dos conceitos e fórmulas apresentados nos itens adiante estão baseados em FABER (2012). O enfoque será dado a variável do tipo contínua, por representar de forma mais adequada os eventos aleatórios da área marítima.

3.1. Definição de Variáveis Aleatórias

Uma variável aleatória é aquela que representa um evento randômico, e que, portanto, pode assumir diferentes valores ao longo do intervalo de observação. As variáveis aleatórias podem ser discretas ou contínuas. Quando a variável só pode assumir valores discretos, ela é denominada discreta. Quando a variável pode assumir infinitos valores dentro de um intervalo, ela é dita contínua e sua probabilidade de ocorrência é definida através de faixas de valores.

A título de entendimento e consolidação, pode-se tomar o exemplo do disco numerado indicado por CLOUGH e PENZIEN (1995), conforme reproduzido na Figura 3.1.

Figura 3.1- Variável discreta "N" e contínua " θ "

Neste modelo, o ponteiro do disco da esquerda está limitado a parar somente sobre os números indicados no visor, e a variável que representa os possíveis valores para estes números "N" pode ser perfeitamente identificada, assumindo valores definidos entre 1 e 10. Assim, tem-se uma variável do tipo discreta. Se o ponteiro do disco da direita não

tiver restrição para parar somente sobre os números inteiros, a variável que representa o ângulo do ponteiro " θ " poderá indicar infinitos valores de ângulos (exemplo: 0,0109°; 3,45°; 56,899°; 354°; etc.) no intervalo contínuo entre 0 e 360°, portanto, caracterizando uma variável do tipo contínua.

Logo, pode-se dizer que a distinção entre os dois tipos de variáveis é que apenas determinados resultados são possíveis para uma variável aleatória discreta, mas qualquer valor, dentro de um número infinito de resultados, num dado intervalo, é possível para uma variável aleatória do tipo contínua.

3.2. Funções de Probabilidade

3.2.1. Distribuição Cumulativa

A função de distribuição acumulada (*Cumulative Distribution Function- CDF*) de uma variável contínua aleatória indica a probabilidade de uma variável assumir valores menores ou iguais a um valor de referência. Matematicamente, escreve-se da seguinte forma:

$$F_X(x) = P(X \le x) \tag{3.1}$$

Onde:

 F_X = função de distribuição acumulada;

X = variável aleatória do evento;

x = valor de referência;

P = probabilidade de ocorrência.

O aspecto da função de distribuição acumulada está indicado na Figura 3.2. A probabilidade acumulada de um evento sempre está compreendida no intervalo fechado entre 0 e 1.

Figura 3.2- Função de distribuição acumulada (FABER, 2012)

3.2.1. Densidade de Probabilidade

A função de densidade de probabilidade (*Probability Density Function - PDF*) de uma variável aleatória indica a probabilidade de uma variável estar compreendida num intervalo desejado. É obtida por derivação da função de distribuição acumulada (FABER, 2012).

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{3.2}$$

Onde:

 f_X = função de densidade de probabilidade.

A área sob a curva da função de densidade de probabilidade (Figura 3.3) é unitária. Dessa forma, tem-se que a integral da função é sempre igual a unidade:

Figura 3.3 – Função de densidade de probabilidade (Adaptado de FABER (2012))

Por definição, a probabilidade de uma variável aleatória contínua estar compreendida num intervalo fechado entre "a" e "b" é igual ao valor da função de

probabilidade acumulada do ponto "b" (probabilidade de não ser maior ou igual a "b") subtraída do valor da função de probabilidade acumulada do ponto "a" (probabilidade de não ser maior ou igual a "a"). Se não, vejamos:

$$\int_{a}^{b} f_{X}(x)dx = F_{X}(b) - F_{X}(a)$$
(3.4)

A forma típica de uma função de distribuição de probabilidade e a correspondente distribuição acumulada estão indicadas na Figura 3.4

Figura 3.4 – Curva PDF e CDF para intervalo de "*a*" até "*b*". (Adaptado de FABER (2012))

Do mesmo modo, a probabilidade de uma variável aleatória contínua estar entre zero e um valor "c" é igual ao valor da função de probabilidade acumulada no ponto "c", tal como apresentado na Eq. (3.5) e na Figura 3.5.

Figura 3.5 – Curva PDF e CDF para intervalo de "0" até "*c*". (Adaptado de FABER (2012))

3.2.2. Parâmetros da Variável Aleatória

3.2.2.1. Média

A média " μ " ou valor esperado "E" de uma variável aleatória contínua é dado pela soma do produto de cada resultado da variável pela sua respectiva probabilidade, dado por:

$$\mu = E[X] = \int_{-\infty}^{\infty} x f_X(x) dx \tag{3.6}$$

3.2.2.2. Momentos Estatísticos

Uma variável aleatória também pode ser descrita através dos seus momentos estatísticos. O momento "m" de ordem "i" é dado por:

$$m_i = E[X^i] = \int_{-\infty}^{\infty} x^i f_X(x) dx$$
(3.7)

Pode-se notar que o momento de ordem 1 (m_1) é igual a média. Ou seja, para o valor de "*i*" igual a 1, a Eq.(3.7) fica idêntica a Eq. (3.6).

Outro momento amplamente usado é o central "mc". Ele é denominado central pois é sempre considerado em relação à média. Neste caso, o momento central de ordem "i" é dado por:

$$mc_{i} = E[(X - \mu)^{i}] = \int_{-\infty}^{\infty} (x - m_{1})^{i} f_{X}(x) dx$$
(3.8)

3.2.2.3. Variância

A variabilidade ou a dispersão do conjunto de dados em torno da média da amostra também é uma característica importante do conjunto de dados. A dispersão pode ser caracterizada pela variância.

A variância é obtida através do momento central de segunda ordem, sendo igual a:

$$Var[x] = E[(x - \mu)^2] = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$$
(3.9)

3.2.2.4. Desvio Padrão

O desvio padrão " σ " é obtido através da variância, sendo dado por:

$$\sigma = \sqrt{Var} \tag{3.10}$$

3.2.2.5. Coeficiente de Variação

O coeficiente de variação "*COV*" mede a taxa de variabilidade da variável aleatória em torno do valor esperado. Ou seja, caracteriza a dispersão dos resultados em torno da média. O valor é obtido através da relação entre o desvio padrão e a média:

$$COV = \frac{\sigma}{\mu} \tag{3.11}$$

3.2.2.6. Coeficiente de Assimetria

O coeficiente de assimetria " γ_1 " é obtido do momento estatístico central de terceira ordem e representa a medida de assimetria da função de densidade de probabilidade. Pode ser obtido por:

$$\gamma_1 = \frac{mc_3}{\sigma^3} \tag{3.12}$$

O sinal do coeficiente de assimetria indica a direção de inclinação do formato do pico da função de distribuição. O formato do pico da função tende à direita quando o valor do coeficiente é menor que zero, tende para a esquerda quando o valor é maior do que zero e fica vertical simétrico quando o valor é igual a zero, conforme indicado na Figura 3.6.

Figura 3.6 – Coeficiente de assimetria

3.2.2.7. Coeficiente de Curtose

O coeficiente de curtose " γ_2 " indica o grau de achatamento da curva de distribuição de probabilidade da variável aleatória, tendo como referência a distribuição de Gauss (Figura 3.7). Quando o valor da curtose é maior que zero, o gráfico apresenta curvatura mais suave próxima a média, ficando abaixo da curva normal. A curtose alta, por outro lado, indica um formato mais acentuado na região da média, ficando acima da curva normal. O coeficiente de curtose é calculado de acordo com a Eq. (3.13).

 \overrightarrow{x}

Figura 3.7 – Coeficiente de curtose

A distribuição de Gauss (Normal) tem coeficiente de assimetria igual a zero e de curtose igual a 3. Esse valor de curtose foi introduzido na Eq. (3.13) para ajustar o valor da curtose da distribuição de Gauss, de modo que fique igual a zero.

3.3. Tipos de Distribuições de Probabilidade

Neste item, são apresentadas algumas das principais funções de probabilidade utilizadas na área de projetos de estruturas marítimas.

3.3.1. Distribuição de Gauss

A distribuição de Gauss, também denominada como distribuição Normal, é uma função amplamente utilizada em diversas áreas da ciência. Uma das características principais desta função é a simplicidade, pois basta apenas conhecer os valores da média e do desvio padrão de uma amostra para montar a curva de distribuição.

A representação estatística da elevação da superfície do mar, por exemplo, pode ser descrita através da distribuição Normal, por fornecer resultados bastante satisfatórios e próximos da realidade (CHAKRABARTI, 2005).

As funções de distribuição de probabilidade e distribuição acumulada são, respectivamente:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)}$$
(3.14)

$$F_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-\mu)}{2\sigma^2}} dx$$
(3.15)

A forma típica de uma distribuição Normal encontra-se exemplificada na Figura 3.8. Observa-se que a função tem formato simétrico no plano vertical.

Figura 3.8 – Distribuição Normal ($\mu = 75 \text{ e } \sigma = 6$)

3.3.2. Distribuições de Weibull

As cargas ambientais que atuam em estruturas marítimas (exemplo: ondas e ventos) possuem valores máximos em determinados períodos, sendo, portanto, objeto de interesse o tratamento estatístico destas informações para fins de projeto de engenharia. A distribuição de Weibull permite obter a estatística de valores máximos de uma distribuição, sendo amplamente utilizada na área marítima.

A função de densidade de probabilidade é dada por:

$$f_X(x) = \frac{(x-u)^{\lambda-1}}{\alpha^{\lambda}} \cdot \lambda \cdot e^{\left(-\left(\frac{x-u}{\alpha}\right)^{\lambda}\right)}$$
(3.16)

E a função de distribuição acumulada é:

$$F_X(x) = 1 - e^{\left(-\left(\frac{x-u}{\alpha}\right)^{\lambda}\right)}$$
(3.17)

A média e o desvio padrão são dados, respectivamente, por:

$$\mu = u + \alpha \Gamma \left(1 + \frac{1}{\lambda} \right) \tag{3.18}$$

$$\sigma = \alpha \sqrt{\Gamma\left(1 + \frac{2}{\lambda}\right) - \Gamma^2\left(1 + \frac{1}{\lambda}\right)}$$
(3.19)

Sendo:

- u = parâmetro de posição;
- α = parâmetro de escala;
- λ = parâmetro de forma;

 Γ = função gama;

 $x \ge u =$ condição de aplicação das fórmulas.

Se o parâmetro de posição for zero (u = 0), a distribuição é chamada de distribuição de Weibull de dois parâmetros. No entanto, se o parâmetro de escala for considerado uma constante, então a distribuição é chamada de distribuição de Weibull de um parâmetro. A distribuição de Weibull se torna a distribuição exponencial quando o parâmetro de forma é igual a 1 ($\lambda = 1$). Além disso, quando o parametro de posição é nulo (u = 0) e o parâmetro de forma é igual a dois ($\lambda = 2$) a distribuição de Weibull se transforma na distribuição de Rayleigh (KARADENIZ, 2013). Na Figura 3.9, são apresentados os diferentes formatos da função de distribuição de probabilidades de Weibull, mantendo-se fixo o parâmetro de escala e variando o parâmetro de forma.

Figura 3.9 – Distribuição de Weibull ($\alpha = 1$; $\lambda = 1$, 2 e 0,7; u = 0)

3.3.3. Distribuição de Rayleigh

A distribuição de Rayleigh é uma particularização da distribuição de Weibull e possui somente os parâmetros de posição e de escala. As funções de densidade de probabilidade e de distribuição acumulada são dadas, nesta ordem, por:

$$f_X(x) = \frac{(x-u)}{\alpha^2} \cdot e^{\left(-\frac{1}{2}\left(\frac{x-u}{\alpha}\right)^2\right)}$$
 (3.20)

$$F_X(x) = 1 - e^{\left(-\frac{1}{2}\left(\frac{x-u}{\alpha}\right)^2\right)}$$
(3.21)

Os valores de média e desvio padrão são:

$$\mu = u + \alpha \sqrt{\frac{\pi}{2}} \tag{3.22}$$

$$\sigma = \alpha \sqrt{\frac{4 - \pi}{2}} \tag{3.23}$$

Figura 3.10 – Distribuição de Rayleigh ($\alpha = 1 \text{ e } u = 0$)

Esta distribuição também se aplica a probabilidade de picos para um processo aleatório de banda estreita com distribuição Normal, o que será visto no decorrer da dissertação.

4. PROCESSOS ESTOCÁSTICOS

4.1. Definição e Conceitos

Em diversas situações, é importante estudar o comportamento de variáveis aleatórias ao longo do tempo. Neste contexto, a variável que representa o evento é dependente do tempo e pode assumir valores distintos a cada instante, caracterizando, desse modo, um processo estocástico. As cargas de ondas que atuam sobre uma estrutura *offshore* podem ser consideradas processos estocásticos, razão pela qual são apresentados estes conceitos neste trabalho.

Um processo estocástico, representado por "X(t)", admite diversas realizações ou registros temporais " X_i ", contendo inúmeros valores possíveis para a variável aleatória "x", conforme exemplificado na Figura 4.1.

Figura 4.1 - Realizações de um processo estocástico

No registro temporal, para cada instante de tempo " t_i " e para cada realização " X_i ", tem-se um valor diferente para a variável aleatória "x". Assim, é possível encontrar uma função de distribuição de probabilidade $f_X(x; t_i)$ num instante de tempo específico, para a variável aleatória, tendo como base o conjunto de realizações (Figura 4.2).

Figura 4.2 – PDF de um conjunto de realizações (KARADENIZ, 2013)

A média para variáveis aleatórias está definida no Capítulo 3, item 3.2.2.1. Para processos estocásticos, a única diferença é que o tempo está envolvido. Dessa forma, temse que:

$$\mu(t) = E[X(t = t_i)] = \int_{-\infty}^{\infty} x f_X(x; t_i) dx$$
(4.1)

Onde:

 $f_X(x; t_i)$ = função de densidade de probabilidade no instante " t_i ";

Duas informações bastante importantes num processo estocástico são as funções de autocorrelação e de autocovariância. De acordo com FABER (2012), a correlação entre todas as realizações possíveis em dois pontos no tempo " t_1 " e " t_2 ", como ilustrado na Figura 4.1, é descrita através da função de autocorrelação, dada pela Eq.(4.2).

A função de autocorrelação também pode ser vista como uma medida estatística que descreve a relação entre uma série temporal e uma versão deslocada da mesma. Por meio desta função é possível identificar a existência de algum padrão de repetição na série.

Desse modo, é possível medir a dependência entre as variáveis aleatórias " x_1 " e " x_2 " definidas nos tempos " t_1 " e " t_2 " através da função de autocorrelação " R_{XX} ", dado por:

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)]$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_{XX}(x_1, x_2; t_1, t_2) dx_1 dx_2$$
 (4.2)

A função de autocovariância " C_{XX} ", que também indica o grau de associação do sinal temporal entre os tempos " t_1 " e " t_2 ", é dada por:

$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu(t_1))(X(t_2) - \mu(t_2))] =$$

=
$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_1 - \mu(t_1))(x_2 - \mu(t_2))f_{XX}(x_1, x_2; t_1, t_2)dx_1dx_2$$
(4.3)

4.2. Processo Estacionário

Um processo estocástico é classificado como estacionário quando seus parâmetros estatísticos não variam com o tempo. Ao satisfazer esta condição, as funções de autocorrelação e de autocovariância vão depender exclusivamente do intervalo de tempo ou defasagem " τ " entre os tempos " t_2 " e " t_1 " ($\tau = t_2 - t_1$) e o processo não é afetado por uma mudança na origem temporal (KARADENIZ, 2013).

Com isso a média e a função de autocorrelação podem ser reescritas conforme apresentado nas equações (4.4) e (4.5).

Sendo um processo estacionário, a média nos dois pontos possui mesmo valor, sendo igual a uma constante (KARADENIZ, 2013). Desse modo, tem-se que:

$$\mu(t) = E[X(t_1)] = E[X(t_2)] = \int_{-\infty}^{\infty} x(t) f_X(x;t) dx = constante$$
(4.4)

Por consequência, a função de autocorrelação passa a ser a integral simples do produto ou a média do produto entre duas funções em dois instantes de tempo, defasadas por " τ ", sendo:

$$R_{XX}(\tau) = E[X(t)X(t+\tau)] = \int_{-\infty}^{\infty} x(t)x(t+\tau)f_X(x,t)dx$$
(4.5)

Quando o valor da defasagem é igual a zero ($\tau = 0$), a função de autocorrelação é igual à variância do processo. Nesta situação, o resultado do produto entre as duas funções sempre será máximo e com valor positivo. Assim, tem-se que:

$$R_{XX}(0) = E[X(t)X(t+0)] = E[X(t)^2]$$
(4.6)

Um gráfico representativo de uma função de autocorrelação de um processo estocástico pode ser visualizado na Figura 4.3. Quando o valor da função $R_{XX}(\tau)$ está próximo de zero significa que o grau de correlação entre os valores x(t) e $x(t + \tau)$ é muito pequeno ou inexistente. Por outro lado, quando o valor da função de autocorrelação é máximo, significa que existe total associação entre os valores de x(t) e $x(t + \tau)$. Isto
acontece quando o valor da defasagem é nulo, fazendo com que o valor da média do produto destas funções seja sempre positivo.

4.3. Processo Ergódigo

A média do processo estocástico pode ser calculada por duas formas distintas: através da média do conjunto de realizações num tempo específico, conforme já indicado na Eq.(4.1), ou através da média de uma única realização, dada pela Eq.(4.7), num tempo suficientemente grande que permita precisão nos resultados.

Um processo estocástico é definido como ergódigo se todas as características do processo puderem ser representadas através de uma única realização. Neste caso, a média temporal de uma única realização é igual a média do conjunto das realizações.

A média temporal de um processo ergódigo para uma única realização é dada por:

$$\tilde{\mu} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$
(4.7)

A função de autocorrelação de um processo ergódigo (função temporal de autocorrelação) é dada por:

$$\tilde{R}_{X} = E[X(t)X(t+\tau)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)X(t+\tau)dt$$
(4.8)

Nas equações acima, "*T*" representa o tempo da realização. Por finalidade prática, o valor deste tempo nunca é igual a infinito. Deste modo, os valores estatísticos ficam aproximados quando comparados com os valores do conjunto de realizações.

O processo ergódigo sempre é estacionário (HUGHES e PAIK, 2010). Portanto, pode-se admitir o resultado da Eq. (4.4) igual ao da Eq.(4.7), sendo, contudo, a última equação muito mais fácil de ser obtida porque necessita somente de uma única realização.

KARADENIZ (2013) enfatiza a importância do processo ergódigo nos projetos de engenharia, visto que permite estimar as características estatísticas de um processo estocástico quando uma ou poucas realizações estão disponíveis.

4.4.Análise Espectral

Um processo estocástico também poder ser representado através da sua função de densidade espectral S_{XX} , por meio da transformada de Fourier da função de autocorrelação (KARADENIZ, 2013). Neste caso, o sinal estocástico é decomposto em diversas componentes harmônicas de diferentes frequências e, deste modo, a série temporal é representada no domínio da frequência. A Figura 4.4 apresenta a transformação dos domínios, aplicável, neste caso, ao assunto de ondas oceânicas.

Figura 4.4 – Domínio do tempo e domínio da frequência (FALTINSEN, 1990)

A transformada de Fourier da função de autocorrelação fornece a função de densidade espectral e, em ordem oposta, a transformada inversa de Fourier da função de densidade espectral fornece a função de autocorrelação. Ambas as funções em notação complexa, conforme indicado por KARADENIZ (2013), são:

$$S_{XX}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-i\omega\tau} d\tau \Leftrightarrow R_{XX}(\tau) = \int_{-\infty}^{\infty} S_{XX}(\omega) e^{i\omega\tau} d\omega$$
(4.9)

As mesmas equações escritas na forma não complexa, ficam:

$$S_{XX}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} R_{XX}(\tau) \cos(\omega\tau) d\tau$$
(4.10)

$$R_{XX}(\tau) = \int_{-\infty}^{\infty} S_{XX}(\omega) \cos(\omega\tau) d\omega \qquad (4.11)$$

Se a defasagem for nula ($\tau = 0$), a função de autocorrelação, neste caso igual à variância do processo, fica dada pela área sob a curva de $S_{XX}(\omega)$:

$$R_{XX}(0) = VAR_{XX} = \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega$$
(4.12)

As definições indicadas anteriormente partem da premissa matemática de que o espectro possui dois lados, sendo um trecho no lado das frequências negativas e outro no lado das frequências positivas ($-\infty < \omega < \infty$). No entanto, para fins práticos, não faz sentido ter espectro com frequências negativas (Figura 4.5). Por isso, utiliza-se apenas o espectro de um lado, duplicando o trecho positivo. Assim, tem-se que:

$$S_{XX}^+(\omega) = 2S_{XX}(\omega) \tag{4.13}$$

Figura 4.5 – Espectro de dois lados e de um lado (HUGHES e PAIK, 2010)

4.4.1. Momentos Espectrais e Largura de Banda

As principais características estatísticas de um processo estocástico podem ser extraídas a partir dos momentos espectrais e da classificação da largura de banda do espectro (KARADENIZ, 2013).

O momento espectral "m" de ordem "i" é dado por:

$$m_i = \int_{-\infty}^{\infty} \omega^i S(\omega) d\omega \tag{4.14}$$

O momento de ordem zero " m_0 " fornece a área total sob o espectro e representa a energia total acumulada no processo estocástico, dado por:

$$m_0 = \int_{-\infty}^{\infty} S(\omega) d\omega \tag{4.15}$$

O parâmetro de largura de banda " ε " definido abaixo assume valores entre zero e um, sendo dado por:

$$\varepsilon = \sqrt{1 - \frac{m_2^2}{m_0 m_4}} \qquad 0 \le \varepsilon \le 1 \tag{4.16}$$

Quando o parâmetro de largura de banda está próximo de zero, o processo é classificado como de banda estreita, apresentando densidade espectral concentrada numa faixa estreita de frequências. Por outro lado, quando está próximo de um, o processo é dito de banda larga, e a densidade se espalha por uma faixa larga de frequências.

Embora não tenha sido mencionado no item 3.3, a distribuição de Rice também é utilizada na área marítima, representando a distribuição de máximos num processo gaussiano com média zero. Se o valor do parâmetro de largura de banda é igual a zero, a distribuição de Rice fica idêntica a distribuição de Rayleigh. Por outro lado, se o parâmetro de largura de banda for próximo de um, a distribuição de Rice se aproxima da distribuição de Gauss (ALMAR-NAESS, 1985). A Figura 4.6 ilustra o conceito.

Figura 4.6 – Espectro de banda larga e banda estreita (ALMAR-NAESS, 1985).

5. ONDAS REGULARES

5.1.Parâmetros da Onda

O conceito de ondas regulares é essencial para a compreensão do comportamento dos oceanos reais. Como demonstrado no capítulo anterior, é possível decompor um sinal estocástico em componentes harmônicas, que, neste contexto, representam as ondas regulares. Esse conceito servirá como base para a compreensão da formação das ondas irregulares, conforme será discutido no próximo capítulo.

A teoria de ondas regulares pode ser aplicada para descrever o comportamento das partículas de água em termos de movimento, velocidade, aceleração e pressão.

Uma onda regular possui formato padronizado e pode ser representada através de uma função harmônica com os seguintes parâmetros, a saber:

Figura 5.1 – Parâmetros da onda regular

L =Comprimento da onda (distância entre cristas);

T = período da onda (tempo necessário para repetição do formato da onda);

 η = elevação da superfície em relação ao nível médio do oceano escrita em função do tempo "t" e da posição "x";

H = amplitude dupla medida entre a crista e o cavado;

a = amplitude simples que representa a altura da crista ou a altura do cavado, sendo igual a $H/_2$;

d = profundidade ou lâmina de água (distância da superfície média até o fundo do oceano, assumido como horizontal).

A função harmônica de uma onda regular ou função harmônica da superfície do mar é dada por:

$$\eta(x,t) = a \operatorname{sen}(kx - \omega t) \tag{5.1}$$

Nesta equação, "k" representa o número de onda e " ω " a frequência angular, explicitados conforme abaixo:

$$k = \frac{2\pi}{L} \tag{5.2}$$

$$\omega = \frac{2\pi}{T} \tag{5.3}$$

É possível visualizar que o número de onda "k" se repete a cada período "T" a uma velocidade angular " ω ".

Outra propriedade importante é a velocidade aparente de propagação da onda "c", denominada celeridade, sendo obtida pela relação entre o comprimento de onda e o período. Esta grandeza indica a velocidade de deslocamento do formato de onda ao longo da direção da propagação do eixo "x".

$$c = \frac{L}{T} = \frac{\omega}{k} \tag{5.4}$$

5.2. Potencial de Velocidade

Na teoria de ondas lineares ou teoria de Airy é admitido, como premissa fundamental, que a inclinação da onda dada pela relação " $^{H}/_{L}$ " é muito pequena, de tal modo que a superfície livre é linearizada no nível médio do mar. Por consequência, podese fazer uma correlação linear entre o deslocamento, a velocidade, a aceleração, a pressão da partícula de água e a função harmônica de elevação da superfície do mar (JOURNÉE e MASSIE, 2001). De acordo com FALTINSEN (1999), os dados de velocidade da partícula da água nas coordenadas cartesianas são obtidos através do potencial de velocidade no campo " ϕ ". Admitindo-se que o fluido é incompressível, irrotacional e sem viscosidade, o vetor velocidade fica igual a:

$$\boldsymbol{V}(x, y, z, t) = \nabla \phi = \boldsymbol{i} \frac{\partial \phi}{\partial x} + \boldsymbol{j} \frac{\partial \phi}{\partial y} + \boldsymbol{k} \frac{\partial \phi}{\partial z}$$
(5.5)

As três parcelas da equação representam os componentes de velocidade translacional em cada direção; desse modo, tem-se que:

$$u = \frac{\partial \phi}{\partial x} \tag{5.6}$$

$$v = \frac{\partial \phi}{\partial y} = 0 \tag{5.7}$$

$$w = \frac{\partial \phi}{\partial z} \tag{5.8}$$

Onde:

u = velocidade da partícula na direção "x";

v = velocidade da partícula na direção "y";

w = velocidade da partícula na direção "z".

Importante salientar que a velocidade da partícula na direção "y" é nula porque o movimento é restrito ao plano "xz".

A equação do potencial da velocidade também pode ser escrita na forma de Laplace, sendo igual a:

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$
(5.9)

A solução da equação de Laplace é conseguida por meio do conhecimento prévio de três condições de contorno, quais sejam: de fundo, dinâmica da superfície livre e a cinemática da superfície livre, isto é, duas condições de superfície e uma condição de fundo. A condição de contorno de fundo parte do pressuposto de que a velocidade vertical da partícula de água é nula quando a coordenada "z" é igual à profundidade da lâmina d'água " - d". Desse modo, tem-se que:

$$w(-d) = \frac{\partial \phi}{\partial z} = 0 \tag{5.10}$$

A condição dinâmica de superfície livre admite que a pressão na superfície livre é igual à pressão atmosférica. Assim, quando $z = \eta$, a pressão é nula. Por se tratar de pressão, utiliza-se a equação de Bernoulli, pois a formulação correlaciona pressão do fluido com velocidade. A pressão "p" em qualquer ponto no plano "xz" é dada em função do tempo "t" por:

$$\frac{\partial\phi}{\partial t} + g\eta + \frac{1}{2}(u^2 + w^2) + \frac{p}{\rho} = C$$
(5.11)

Uma vez que a amplitude da onda é considerada pequena, os termos quadráticos da velocidade $u^2 e w^2$ podem ser desprezados. Com isso, a Eq. (5.11) fica reduzida para:

$$\frac{\partial \phi}{\partial t} + g\eta + \frac{p}{\rho} = C \tag{5.12}$$

Segundo JOURNÉE e MASSIE (2001), os valores de p, ρ e C não influenciam no potencial de velocidade ao serem incluídos na parcela $\frac{\partial \phi}{\partial t}$. Logo, pode-se reescrever a equação anterior para a coordenada "z" igual a zero, obtendo:

$$\frac{\partial \phi}{\partial t} + g\eta = 0 \tag{5.13}$$

Onde:

g = aceleração da gravidade;

 ρ = densidade do fluido;

C = constante.

FALTINSEN (1999) ainda enfatiza que embora a condição dinâmica de superfície seja dependente da corrente marinha e da velocidade de avanço do corpo flutuante, admite-se que estas variáveis sejam nulas. Com efeito, o potencial de velocidade é exclusivamente proporcional à amplitude de onda.

A última condição é a cinemática da superfície. Ela parte da hipótese de que a velocidade vertical na superfície é igual à velocidade do fluido. Portanto:

$$\frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} \tag{5.14}$$

Ao substituir as condições de contorno na equação do potencial de velocidade e fazer os rearranjos matemáticos, obtêm-se as equações para o potencial de velocidade para a condição de águas rasas e águas profundas. Neste ponto, cabe registrar que, caso o leitor queira obter maiores detalhes acerca do desenvolvimento e demonstração das equações, as bibliografias indicadas no final deste trabalho podem ser consultadas.

O potencial de velocidade em águas rasas é dado por:

$$\phi(x, z, t) = \frac{ga\cosh k (z+d)}{\omega \cosh kd} \cos (\omega t - kx)$$
(5.15)

O potencial de velocidade em águas profundas é dado por:

$$\phi(x, z, t) = \frac{ga}{\omega} e^{kz} \cos(\omega t - kx)$$
(5.16)

Onde:

z = coordenada vertical com convenção de valor positivo para cima;

x = direção da propagação da onda no eixo horizontal.

O potencial de velocidade não tem significado físico e é utilizado por comodidade matemática dentro do estudo da mecânica dos fluidos (FALTINSEN, 1999). No entanto, é a partir desta equação que são obtidos todos os demais parâmetros (deslocamento, velocidade, aceleração e pressão das partículas) de ondas regulares.

O critério de aplicação das fórmulas de águas rasas e profundas depende da relação entre o comprimento da onda e a profundidade da lâmina de água. Se a distância da superfície média até o fundo do mar for maior ou igual à metade do comprimento de onda $d \ge \frac{L}{2}$, configura-se a condição de águas profundas. Caso contrário, pode-se tratar como águas médias ou rasas (CHAKRABARTI, 2005). Nesta dissertação, o enfoque é dado apenas a águas profundas, onde majoritariamente operam unidades estacionárias de produção do tipo FPSO.

5.3. Características das Partículas de Água

As partículas de água possuem deslocamento orbital. Quando estão localizadas em águas rasas, se movem em formato elipsoidal. Já em águas profundas, se movem em formato circular, conforme esquematizado na Figura 5.2.

Figura 5.2 – Movimento das partículas

Os componentes vetoriais de velocidade e aceleração da partícula ao longo do sentido de propagação da onda são obtidos através da equação do potencial de velocidade. Dependendo da posição da onda, as direções dos vetores velocidade e aceleração se alteram, reduzindo suas respectivas magnitudes à medida que se distanciam da superfície (Figura 5.2) e (Figura 5.3).

Figura 5.3 – Vetores de velocidade e aceleração das partículas (Shore Protection Manual, Vol.1, 1984)

A seguir, são apresentadas as fórmulas de velocidade, aceleração e pressão para a condição de águas profundas, tendo como base a teoria de onda regular de *Airy*.

Velocidade horizontal:

$$u = \omega a e^{kz} \operatorname{sen} \left(\omega t - kx \right) \tag{5.17}$$

Velocidade vertical:

$$w = \omega a e^{kz} \cos\left(\omega t - kx\right) \tag{5.18}$$

Aceleração horizontal:

$$ax = \omega^2 a e^{kz} \operatorname{sen} \left(\omega t - kx \right) \tag{5.19}$$

Aceleração vertical:

$$az = -\omega^2 a e^{kz} \cos\left(\omega t - kx\right) \tag{5.20}$$

Pressão dinâmica:

$$p = \rho gae^{kz} \mathrm{sen} \left(\omega t - kx\right) \tag{5.21}$$

Onde:

 ρ = peso específico do fluido;

 $\omega =$ frequência angular da onda.

A obtenção das expressões relativas a cinemática da onda e a pressão dinâmica é de suma importância, pois são usadas na obtenção das respostas estruturais.

Existem outras teorias de ondas que também descrevem o comportamento cinemático da partícula de água e que podem ser utilizadas, a depender da validade do campo de aplicação, tais como *Stokes, Cnoidal, Solitary waves*, facilmente encontradas em referências tais como CHAKRABARTI (2005) ou FALTINSEN (1999), as quais não estão apresentadas neste trabalho.

5.4. Relação de Dispersão

O comprimento e o período das ondas regulares oceânicas estão intimamente ligados, de modo que só pode haver um único comprimento de onda para uma única frequência. Essa afirmação é uma importante característica da onda e fundamenta-se na

relação de dispersão, conforme apresentado por FALTINSEN (1999). A relação de dispersão para águas profundas é dada por:

$$\omega^2 = gk \tag{5.22}$$

A partir da relação de dispersão, pode-se estimar o comprimento da onda a partir do período e vice-versa. Fazendo as substituições necessárias na Eq. (5.22) com os parâmetros de onda apresentados no item 5.1, pode-se concluir que:

$$\omega^2 = gk \to L = \frac{gT^2}{2\pi} \to T = \sqrt{\frac{2\pi L}{g}}$$
(5.23)

5.5.Energia de Onda

A energia de uma onda regular é composta pela soma da parcela cinética produzida pelo movimento das partículas com a parcela potencial produzida pela elevação da superfície da água (BHATTACHARYYA, 1978). A energia total resultante por unidade de área de superfície do mar é dada por:

$$E = \frac{1}{2}\rho g\eta^2 \tag{5.24}$$

6. ONDAS IRREGULARES

6.1. Conceitos Iniciais

Não é difícil perceber que as ondas oceânicas possuem comportamento irregular e randômico. Uma boia oceanográfica ou qualquer outro instrumento de medição de alturas de ondas colocado num ponto fixo do oceano fornece registros de elevações da superfície do mar totalmente aperiódico, conforme exemplificado na Figura 6.1.

Figura 6.1 – Elevação da superfície do mar (KARADENIZ, 2013)

O sinal aleatório indicado na figura acima não pode ser descrito através de uma função matemática conhecida. Por este motivo, usualmente ele é tratado de forma probabilística, tendo como base dados preexistentes coletados ao longo do tempo.

Todo sinal aleatório pode ser obtido através da soma de funções harmônicas. Neste sentido, pode-se imaginar uma onda irregular como sendo um somatório de diversas ondas regulares com períodos, alturas e fases distintas (Figura 6.2).

Figura 6.2 – Formação de onda irregular por superpsição de ondas regulares (KARADENIZ, 2013)

O pressuposto do somatório de ondas regulares parte da premissa de que estas ondas possuem baixa amplitude comparada com seu comprimento, atendendo, portanto, o critério de superposição linear, conforme formulação de *Airy*. Isto é, ondas regulares podem ser somadas sem introdução de erros expressivos nos resultados.

Além do pressuposto da formulação, tem-se a condição de mar totalmente desenvolvido, significando que todas as ondas já estão formadas, ou seja, o vento já transferiu toda a energia para as ondas, de modo que o sistema possa ser considerado estável.

6.2.Espectro de Mar

Fundamentado pelo conceito apresentado no item anterior, pode-se reescrever a função de elevação da superfície do mar, conforme indicado na Eq.(6.1) (CHAKRABARTI, 1987), utilizando a série de Fourier:

$$\eta(t) = \sum_{n=1}^{N} (a_n \cos n\omega t + b_n \sin n\omega t)$$
(6.1)

$$a_n = \frac{2}{T_s} \int_0^{T_s} \eta(t) \cos n\omega t \, dt \tag{6.2}$$

$$b_n = \frac{2}{T_s} \int_0^{T_s} \eta(t) \operatorname{sen} n\omega t \, dt \tag{6.3}$$

Sendo:

N = número das componentes de Fourier;

 $a_n e b_n$ = coeficientes da série de Fourier;

 T_s = período da série de Fourier.

A caracterização da onda irregular através da soma finita de funções harmônicas fornece resultado satisfatório apenas para uma única medição, não sendo suficiente, portanto, para descrever o comportamento de todas as condições de estado de mar. Este tipo de abordagem é usado quando há interesse em avaliar a estatística das ondas e das respostas no domínio do tempo ou para simulações em laboratório. Por este motivo, é utilizada a abordagem espectral para obtenção das respostas em geral, onde o oceano é idealizado através dos componentes energéticos de cada onda regular que o compõe (CHAKRABARTI, 1987).

CHAKRABARTI (1987) indica ainda que a energia total para um estado de mar pode ser definida através do seu espectro energético, constituído pela contribuição energética de infinitas ondas regulares, sendo:

$$E = \frac{1}{2}\rho g \int_{-\infty}^{\infty} [\eta(t)]^2 dt$$
(6.4)

Fazendo a generalização da função de elevação da superfície do mar por meio da soma infinita de ondas harmônicas, de modo que as frequências não sejam representadas por componentes da série de Fourier, a equação fica:

$$\eta(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} [a(\omega)\cos\omega t + b(\omega)\sin\omega t] d\omega$$
(6.5)

Onde:

$$a(\omega) = \int_{-\infty}^{\infty} \eta(t) \cos\omega t dt$$
(6.6)

$$b(\omega) = \int_{-\infty}^{\infty} \eta(t) \operatorname{sen}\omega t dt$$
(6.7)

Na Eq.(6.5), os termos $a(\omega)$ e $b(\omega)$ estão generalizados, de modo que podem variar continuamente em função da frequência, diferentemente da Eq. (6.1).

A elevação da superfície do mar segue a distribuição de Gauss com média zero. Além disso, os dados relativos à elevação da superfície são coletados em intervalos aproximados de 3 horas, tendo como origem de referência o nível médio do mar neste período de tempo. Assume-se que este tempo é suficiente para garantir que o processo se mantenha estacionário e ergódigo, independentemente da mudança nos pontos de localização da coleta de dados (KARADENIZ, 2013).

A função espectral ou espectro de mar " S_{η} " pode ser obtida através da transformada de Fourier da função de autocorrelação (CHAKRABARTI, 1987), conforme já abordado no Capítulo 4. A energia total do espectro por unidade da superfície do mar é igual à área total sob o gráfico (Figura 6.3), sendo escrita matematicamente por:

$$E_{tot} = \frac{1}{2} \rho g \int_0^\infty S_\eta(\omega) d\omega$$
 (6.8)

Figura 6.3 – Espectro de mar (Adaptado de KARADENIZ, 2013)

Conforme mencionado, o espectro de mar é formado a partir da contribuição de diversas faixas de frequências de ondas regulares. Portanto, a energia contida numa faixa de frequência " E_i " é dada pela área do retângulo " A_i " de lados " $S(\omega_i)$ " e " $\Delta \omega_i$ ", conforme destacado na Figura 6.3.

$$E_i = A_i = S(\omega_i) \Delta \omega_i \tag{6.9}$$

Logo, o valor de $S(\omega_i)$, fica:

$$S(\omega_i) = \frac{E_i}{\Delta \omega_i} \tag{6.10}$$

A energia de uma onda regular foi apresentada no Capítulo 5 através da Eq.(5.24). Ao substituir esta equação na Eq. (6.10), tem-se:

$$S(\omega_i) = \frac{\frac{1}{2}\rho g \eta_i^2}{\Delta \omega_i} \tag{6.11}$$

A parcela " ρg " possui valor constante. Desse modo, ao ser retirada da equação, faz com que a energia do espectro fique igual a área. Assim, o eixo vertical do gráfico fica proporcional ao quadrado da altura da onda:

$$S(\omega_i) = \frac{\frac{1}{2}\eta_i^2}{\Delta\omega_i} \tag{6.12}$$

Ao multiplicar a Eq. (6.12) pela faixa de frequência " $\Delta \omega_i$ ", tem-se a área " A_i ":

$$\frac{\frac{1}{2}\eta_i^2}{\Delta\omega_i}\Delta\omega_i = A_i \to A_i = \frac{1}{2}\eta_i^2$$
(6.13)

Sendo a média da elevação da superfície do mar igual a zero, a área sob o espectro fica igual a variância. Desse modo, tem-se que:

$$VAR = \sigma^2 = \sum_{i=1}^{N} S_{\eta}(\omega_i) \Delta \omega_i$$
(6.14)

A amplitude simples de cada onda regular que compõe o espectro pode ser obtida da Eq.(6.12). Assim, tem-se que:

$$\eta_i = \sqrt{2 \, S_\eta(\omega_i) \Delta \omega_i} \tag{6.15}$$

As considerações matemáticas para formulação do espectro apresentadas até o momento baseiam-se na ideia de que todas as ondas se movem na mesma direção. Esta abordagem é chamada de mar bidimensional ou mar de crista longa (mar de projeto). Contudo, a realidade do oceano mostra que as ondas podem vir de qualquer direção, apresentando aspecto tridimensional, sendo denominado, neste caso, mar de crista curta. Os aspectos dos mares mencionados estão ilustrados na Figura 6.4.

Figura 6.4 – Mar de crista curta (esquerda) e longa (direita).

A formação do espectro tridimensional pode ser realizada a partir do espectro bidimensional. Para tanto, introduz-se uma função que representa o espalhamento da energia das ondas (*wave spreading*). HUGHES e PAIK (2010) sugerem a função de espalhamento abaixo:

$$f(\varphi) = \frac{2}{\pi} \cos^2 \varphi \tag{6.16}$$

Sendo:

 φ = direção das componentes de onda, limitado ao intervalo de $-\frac{\pi}{2} \le \varphi \le \frac{\pi}{2}$;

O espectro tridimensional possui a seguinte forma matemática:

$$S_{\eta 3D}(\omega,\theta) = S_{\eta}(\omega)f(\varphi) \tag{6.17}$$

A introdução da função de espalhamento não modifica a energia do espectro. Desse modo, a integração da função é sempre igual à unidade.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(\varphi) \, d(\varphi) = 1 \tag{6.18}$$

A função de espalhamento descreve a distribuição de energia das ondas nas diferentes direções de incidência. A norma DNV-CG-0130 sugere a utilização da seguinte expressão:

$$f(\varphi) = \frac{\Gamma(1+n/2)}{\sqrt{\pi}\Gamma(1/2+n/2)} \cos^{n}(\varphi)$$
(6.19)

Na equação acima, "n" é uma constante que representa o tipo de mar (de 2 a 4 para mar local; $n \ge 7$ para mar de *swell*). Define-se como mares locais aqueles gerados pelo vento local, em que as ondas formadas possuem característica irregular e de crista curta. O mar de *swell*, por sua vez, ocorre quando as ondas são geradas por tempestades em regiões distantes, possuindo aparência regular e crista longa.

Em geral, pode-se afirmar que a não consideração do espalhamento de ondas implica resultados conservadores para o projeto de fadiga, visto que a energia total fica concentrada numa única direção (KARADENIZ, 2013).

6.3. Propriedades Estatísticas da Onda

As medidas estatísticas de onda podem ser obtidas no domínio da frequência, a partir do espectro, ou no domínio do tempo, a partir da série temporal. Para obtenção destas medidas estatísticas em função da frequência, torna-se necessário calcular os momentos espectrais, conforme demonstrado no Capítulo 4.

A partir de uma medição de dados de elevação da superfície do mar (Figura 6.5), podem ser identificados os seguintes parâmetros estatísticos:

Figura 6.5 – Definição dos parâmetros de onda (CHAKRABARTI, 1987)

- T_s = tempo total da medição do sinal;
- T_z = período de cruzamento zero-ascendente;
- $T_c = \text{período entre cristas};$
- H_{max} = altura máxima entre crista e cavado obtida do sinal;
- H= altura individual medida entre crista e cavado.

Conforme pode ser observado, diversas alturas de ondas "H" podem ser extraídas do sinal irregular. Por exemplo, pode-se medir as alturas de onda com período de cruzamento zero-ascendente. Com isso, é possível, a partir destes dados, montar um histograma de distribuição de ondas (Figura 6.6) contendo o percentual de ocorrência por faixa de alturas.

Figura 6.6 – Histograma de distribuição de altura de ondas para um estado de mar (Adaptado de MICHEL, 1968)

A distribuição de Rayleigh costuma se ajustar bem ao histograma de altura de ondas para espectros de banda estreita. Ainda assim, mesmo que o espectro seja de banda larga, a distribuição de Rayleigh continua fornecendo valores satisfatórios, permitindo sua aplicação em projetos de engenharia marítima (MICHEL, 1968).

Em termos de análise de fadiga de estruturas *offshore*, a utilização da distribuição de Rayleigh implica resultados mais conservadores, quando o espectro é de banda larga (WANG, 2009).

Em síntese, pode-se dizer que a elevação da superfície do mar segue a distribuição de Gauss com média zero e que a distribuição dos máximos (picos) das elevações da onda segue a distribuição de Rayleigh para espectros de banda estreita (Figura 6.7).

Ao assumir a validade da distribuição de Rayleigh, a altura significativa e a altura média quadrática das ondas podem ser obtidas, conforme apresentado nos itens 6.3.1 e 6.3.2 adiante.

Figura 6.7 – Distribuições da elevação da superfície do mar e dos picos das elevações de onda.

6.3.1. Altura Significativa de Onda

Um parâmetro importante é a altura significativa de onda " H_s ", representada algebricamente pela média do terço das maiores ondas de uma medição (CHAKRABARTI, 1987). Na forma discreta, a altura significativa é dada por:

$$H_s = \frac{3}{N} \sum_{i=1}^{N/3} H_i \tag{6.20}$$

A altura significativa também pode ser obtida a partir do momento espectral, conforme indicado na equação abaixo:

$$H_s = 4\sqrt{m_0} \tag{6.21}$$

O desvio padrão das alturas de onda " σ_h " é igual a $\sqrt{m_0}$. Assim, tem-se a seguinte relação:

$$H_s = 4\sigma_h \tag{6.22}$$

6.3.2. Média Quadrática das Alturas

A média quadrática de todas as alturas de onda da medição, denominada por *root mean square* (RMS) pode ser obtida por:

$$H_{rms}^2 = \frac{1}{N} \sum_{i=1}^{N} H_i^2$$
(6.23)

Onde:

N = número de alturas de ondas H_i da medição.

Da mesma forma, também pode ser obtido por:

$$H_{rms} = 2\sqrt{2m_0} \tag{6.24}$$

Essa medida de RMS é comumente usada para quantificar a altura média das ondas e fornece uma estimativa da energia média em uma dada medição. É uma forma de resumir as alturas das ondas em uma única medida representativa.

6.3.3. Períodos Médios de Onda

De acordo com CHAKRABARTI (1987), existem duas maneiras de contabilizar o período médio das ondas numa dada medição, qual seja: através da quantidade de períodos de cruzamento zero-ascendente " N_z " ou através da quantidade de períodos entre sucessivas cristas " N_c ".

O período médio de cruzamento zero-ascendente " \overline{T}_z " é dado por:

$$\overline{T}_z = \frac{T_s}{N_z} \tag{6.25}$$

Já o período médio entre cristas " $\overline{T_c}$ " é dado por:

$$\overline{T}_c = \frac{T_s}{N_c} \tag{6.26}$$

Quando a diferença entre o período médio entre cristas e o período médio de cruzamento zero-ascendente é próxima de zero, a maior parte das ondas do sinal temporal cruza o eixo horizontal, sugerindo, neste caso, um espectro de banda estreita com energia concentrada num intervalo reduzido de frequências (CHAKRABARTI, 1987).

De acordo com CHAKRABARTI (1987), o período médio entre máximos ou entre cristas e o período de cruzamento zero-ascendente podem ser obtidos a partir dos momentos do espectro de mar, sendo:

$$\overline{T}_c = 2\pi \sqrt{\frac{m_2}{m_4}} \tag{6.27}$$

$$\overline{T}_z = 2\pi \sqrt{\frac{m_0}{m_2}} \tag{6.28}$$

Nas análises espectrais, existe também o período de pico " T_p " que representa o período correspondente ao pico do espectro de mar, dado por:

$$T_p = \frac{2\pi}{\omega_p} \tag{6.29}$$

Onde:

 ω_p = frequência de pico do espectro de mar.

6.3.4. Distribuição de Probabilidades de Altura de Onda

Ainda assumindo a distribuição de Rayleigh para as alturas de onda de um processo gaussiano de média zero das elevações, sua função de densidade de probabilidade é igual a:

$$f(H_i) = \frac{2H_i}{H_{rms}^2} e^{-\binom{H_i^2}{H_{rms}^2}}$$
(6.30)

CHAKRABARTI (1987) também indica a função de probabilidade acumulada das alturas de ondas, conforme abaixo:

$$F(H_i) = 1 - e^{-\binom{H_i^2}{H_{rms}^2}}$$
(6.31)

As mesmas expressões são definidas por CHAKRABARTI (1987), tendo como base o primeiro momento espectral e a amplitude simples da onda "a = (H/2)". Assim, a função de densidade de probabilidades e a função de probabilidade acumulada são dadas, respetivamente, por:

$$f(a) = \frac{a}{m_0} e^{-\left(a^2/_{2m_0}\right)}$$
(6.32)

$$F(a) = 1 - e^{-\left(\frac{a^2}{2m_0}\right)}$$
(6.33)

6.4. Espectros Padronizados

O espectro de mar é uma representação matemática da distribuição de energia de ondas no oceano. Usualmente é expresso a partir da altura significativa " H_s ", período de pico " T_p " ou do período de cruzamento zero-ascendente " T_z " (*zero-upcrossing*) e outros parâmetros. Um espectro de ondas descreve apenas um único estado do mar e é válido, no geral, para o período de curto prazo de três horas.

Diversas formulações matemáticas de espectro foram estabelecidas para diversas regiões do mundo, levando em conta as particularidades locais, e estão disponíveis em diversas literaturas e normas, tais como em CHAKRABARTI (1987) e pelas sociedades classificadoras (DNV, ABS, etc). Para efeito deste trabalho, serão apresentados adiante apenas os dois espectros padrão amplamente utilizados nos projetos de estruturas marítimas, de acordo com as fórmulas extraídas da DNV-CG-0130, bem como o espectro de JONSWAP com parâmetros ajustados para a costa brasileira.

6.4.1. Espectro de Pierson-Moskowitz (P-M)

O espectro de Pierson e Moskowitz foi apresentado em 1964 e representa de forma satisfatória a energia contida num estado de mar desenvolvido (FALTINSEN, 1998), sendo definido por:

$$S_{PM}(\omega) = \frac{5}{16} H_s^2 \omega_p^4 \omega^{-5} \exp\left(-\frac{5}{4} \left(\frac{\omega}{\omega_p}\right)^{-4}\right)$$
(6.34)

Onde:

 ω = frequência angular da onda (rad/s);

$$\omega_p = \frac{2\pi}{T_p}$$
 = frequência angular de pico da onda (rad/s).

Importante enfatizar que a energia contida num espectro de mar é proporcional ao quadrado da altura significativa de onda. Usando a formulação de P-M, pode-se notar que à medida que a altura da onda cresce, a área do espectro também cresce, consequentemente, aumentando a energia total do espectro. Percebe-se também que o formato dos espectros permanece semelhante, porém escalado pela altura significativa de onda (Figura 6.8).

Figura 6.8 – Espectros de mar com T_z fixo (8s) e H_s variando

Ao fixar a altura de onda e variar o período, percebe-se que o espectro se desloca no sentido do eixo horizontal, mantendo a mesma área. Ou seja, a variação do período com a manutenção da altura de onda não afeta a energia contida no espectro e, por isso, o resultado do momento espectral de primeira ordem " m_0 " sempre será igual para todas faixas de " T_z " (Figura 6.9).

Figura 6.9 – Espectros de mar com H_s fixo (6m) e T_z variando

6.4.2. Espectro de JONSWAP

O espectro de JONSWAP (*Joint North Sea Wave Project*) foi desenvolvido para o mar do norte na década de 1970 e é amplamente utilizado no mundo inteiro. De acordo com FALTINSEN (1998), a equação desse espectro é escrita a partir da modificação da fórmula de P-M, dada por:

$$S_{J}(\omega) = A_{\gamma} S_{PM}(\omega) \gamma^{exp\left(-0,5\left(\frac{\omega-\omega_{p}}{\sigma_{s}\,\omega_{p}}\right)^{2}\right)}$$
(6.35)

$$A_{\gamma} = 1 - 0.287 \ln(\gamma) \tag{6.36}$$

Sendo:

 γ = parâmetro adimensional para a forma do pico do espectro;

 ω_p = frequência de pico do espectro (rad/s);

 A_{γ} = fator de normalização;

 σ_s = parâmetro de largura do pico do espectro;

O parâmetro " σ " se refere a largura do pico do espectro e normalmente possui os seguintes valores:

 $\sigma_{s-}=0,07$ quando $\omega\leq\omega_{p},$ e0,09quando $\omega>\omega_{p}$

Portanto, pode-se dizer que o espectro de P-M é um caso particular do espectro de JONSWAP quando $\gamma = 1$.

6.4.3. Espectro de JONSWAP Modificado

Em alguns projetos na costa brasileira, utiliza-se a formulação de JONSWAP modificada, com ajuste no parâmetro de correção do pico " γ ", dada por:

$$S_{JB}(f) = \frac{5}{16} H_s^2 T_p \left(\frac{f_p}{f}\right)^5 A_{\gamma} \exp\left(-\frac{5}{4} \left(\frac{f}{f_p}\right)^{-4}\right) \gamma^{\exp\left[\frac{-(f-f_p)}{(2\sigma_s^2 f_p^2)}\right]}$$
(6.37)

Sendo:

$$\gamma = P_1 T_p^{(-P_2)} \tag{6.38}$$

O período de cruzamento zero-ascendente deve ser obtido por:

$$T_z = T_p \sqrt{\frac{P_3 + \gamma}{P_4 + \gamma}} \tag{6.39}$$

Onde:

 S_{JB} = espectro de JONSWAP ajustado para o Brasil (m²/H_z);

 $f_p = 1/T_p$ = frequência de pico (H_z);

 P_1, P_2, P_3, P_4 = parâmetros de ajuste associados aos dados de onda da costa brasileira.

7. UNIDADE FLUTUANTE NO MAR

7.1. Movimentos de Corpo Rígido

Quando a unidade flutuante está posicionada no mar, fica sujeita a diversas forças ambientais advindas de diferentes direções. Por consequência, surgirão movimentos de corpo rígido que tenderão a retirar a unidade flutuante de sua posição de equilíbrio. As deformações do casco, embora existentes, são muito pequenas frente aos deslocamentos de corpo rígido, de tal modo que podem ser consideradas desprezíveis nas análises de movimento.

Os movimentos do navio no mar são definidos por três translações (*Surge*, *Sway* e *Heave*) e três rotações (*Roll*, *Pitch* e *Yaw*), totalizando 6 graus de liberdade, conforme esquematizado na Figura 7.1.

Figura 7.1 - Convenção de movimentos da unidade flutuante

Assim, tem-se a seguinte convenção:

- Surge (1) = translação na direção do eixo "x";
- Sway (2) = translação na direção do eixo "y";
- *Heave* (3) = translação na direção do eixo "z";
- *Roll* (4) = rotação em torno do eixo "x";
- *Pitch* (5) = rotação em torno do eixo "y";
- *Yaw* (6) = rotação em torno do eixo "z".

Quando um corpo flutuante de grande dimensão fica submetido a um trem de ondas regulares de altura "H", conforme ilustrado na Figura 7.2, surgem forças e momentos externos cuja resultante atua em seu centro de gravidade.

Figura 7.2 – Definição de movimentos do corpo flutuante

Neste caso, o fenômeno físico pode ser formulado de acordo com a segunda lei de Newton (LEVY, 1989), sendo igual a:

$$\boldsymbol{M}.\,\ddot{\boldsymbol{x}}(t) = \boldsymbol{f}_{ext}(t) \tag{7.1}$$

Onde:

M = matriz de massa do corpo;

 \ddot{x} = derivada segunda do deslocamento em função do tempo = aceleração;

t = tempo;

 f_{ext} = forças e momentos externos.

As forças externas são de natureza hidrostática e hidrodinâmica e podem ser obtidas através da integração das pressões sobre a superfície do corpo (LEVY, 1989). Assim, pode-se equacionar a força externa em função das pressões da seguinte forma:

$$\boldsymbol{f}_{ext}(t) = -\int_{S} (P_S + P_H) \boldsymbol{n} dS$$
(7.2)

Onde:

 P_S = pressão hidrostática;

 P_H = pressão hidrodinâmica;

 \boldsymbol{n} = normal generalizada em relação a superfície do corpo, sendo igual a:

$$n = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5 \\ n_6 \end{bmatrix} = \begin{bmatrix} \cos(n, i) \\ \cos(n, j) \\ \cos(n, k) \\ (y - y_g)n_3 - (z - z_g)n_2 \\ (z - z_g)n_1 - (x - x_g)n_3 \\ (x - x_g)n_2 - (y - y_g)n_1 \end{bmatrix}$$
(7.3)

Na equação acima, "n" representa os cossenos diretores do vetor normal à superfície do corpo e "i", "j", "k" os vetores unitários nas direções "x", "y","z" respectivamente. As coordenadas " x_g ", " y_g ", " z_g " se referem ao centro de massa do corpo onde estão calculados os movimentos.

A força hidrostática " f_s " é a resultante da pressão hidrostática sobre a variação da superfície do corpo " ΔS " quando este se movimenta (LEVY, 1989), sendo dada por:

$$\boldsymbol{f}_{\boldsymbol{s}} = -\int_{\Delta \boldsymbol{S}} P_{\boldsymbol{S}} \boldsymbol{n} d\boldsymbol{S} \tag{7.4}$$

O resultado da integração da Eq.(7.4) fornece o produto da matriz de restauração hidrostática "C" pelo vetor de deslocamento do corpo "x(t)". Assim, tem-se que:

$$\boldsymbol{f}_{\boldsymbol{s}} = -\boldsymbol{C} \, \boldsymbol{x}(t) \tag{7.5}$$

A força hidrodinâmica, por sua vez, representa a resultante das pressões hidrodinâmicas que atuam na superfície do corpo, sendo dada por:

$$\boldsymbol{f}_{H} = -\int_{S} P_{H} \boldsymbol{n} dS \tag{7.6}$$

Segundo LEVY (1989), a determinação da pressão hidrodinâmica pode ser realizada considerando que é constituída de duas componentes. A primeira componente de pressão é produzida pela excitação da onda incidente ao passar pelo corpo completamente fixado e restrito de movimentos. Esta componente é chamada de força de excitação " f_{exc} " que também pode ser dividida em duas parcelas: a primeira considera

que o corpo é transparente e não interfere na onda incidente; e a segunda parcela considera a presença do corpo flutuante e o efeito que ele gera nas ondas incidentes.

A primeira parcela da força de excitação, também conhecida como força de Froude-Krilov " f_{fk} ", está associada à pressão dinâmica de onda " P_W " devido ao potencial da onda incidente, dada por:

$$\boldsymbol{f_{fk}} = -\int_{S} P_W \boldsymbol{n} dS \tag{7.7}$$

A segunda parcela da força de excitação, como dito, considera a presença do corpo e o efeito que ele causa nas ondas incidentes. A presença do corpo, considerado fixo, interfere no escoamento da onda incidente, criando um campo de pressões de difração " P_D " responsável, consequentemente, pelo surgimento da força de difração " f_D ". Assim:

$$\boldsymbol{f}_{\boldsymbol{D}} = -\int_{S} P_{\boldsymbol{D}} \boldsymbol{n} dS \tag{7.8}$$

De posse das duas parcelas, conforme dado pelas equações (7.7) e (7.8), pode-se escrever a primeira componente da força hidrodinâmica, dada por:

$$f_{exc} = f_{fk} + f_D \tag{7.9}$$

Resta, portanto, definir a segunda componente da força hidrodinâmica.

Para obtenção desta segunda componente, assume-se que o corpo é colocado para vibrar no fluido sem a presença de ondas externas. Neste caso, o movimento do corpo gera irradiação de ondas no sentido de dentro para fora, criando um campo de pressões de irradiação " P_{IR} ", que dá origem a força de irradiação " f_{IR} " (LEVY, 1989).

$$\boldsymbol{f}_{IR} = -\int_{S} P_{IR} \boldsymbol{n} dS \tag{7.10}$$

Da mesma forma que a força de excitação, a força de irradiação também pode ser dividida em duas parcelas. Neste caso, a primeira é proporcional à aceleração do corpo, gerando a matriz de massa adicional "*A*", fisicamente representada pela massa de água covibrante no entorno do corpo flutuante, e a segunda parcela gerando a matriz de amortecimento potencial "*B*". Portanto, pode-se definir a força de irradiação por:

$$\boldsymbol{f}_{\boldsymbol{I}\boldsymbol{R}} = -\boldsymbol{A}\boldsymbol{\ddot{\boldsymbol{x}}} - \boldsymbol{B}\boldsymbol{\dot{\boldsymbol{x}}} \tag{7.11}$$

Tanto a matriz de massa adicionada quanto a matriz de amortecimento dependem do formato e da frequência de oscilação do corpo flutuante (FALTINSEN, 1998).

Uma vez definidos todos os componentes de força, conforme exposto nos parágrafos anteriores, pode-se retornar à Eq.(7.1) e fazer as substituições necessárias incluindo as equações das forças. Desse modo, vem:

$$\boldsymbol{M}.\ddot{\boldsymbol{x}}(\boldsymbol{t}) = -\int_{S} (P_{S} + P_{H})\boldsymbol{n}dS$$
$$= -\int_{S} P_{IR}\boldsymbol{n}dS - \int_{S} P_{W}\boldsymbol{n}dS - \int_{S} P_{D}\boldsymbol{n}dS - \int_{\Delta S} P_{S}\boldsymbol{n}dS$$
$$= -\boldsymbol{A}\ddot{\boldsymbol{x}} - \boldsymbol{B}\dot{\boldsymbol{x}} + \boldsymbol{f}_{fk} + \boldsymbol{f}_{D} - \boldsymbol{C}.\boldsymbol{x}(t)$$
(7.12)

Ao realizar os rearranjos matemáticos necessários, chega-se à equação do movimento dinâmico do corpo flutuante, constituindo um sistema dinâmico composto por massa, mola e amortecedor, sendo igual a:

$$(\boldsymbol{M} + \boldsymbol{A})\ddot{\boldsymbol{x}} + \boldsymbol{B}\dot{\boldsymbol{x}} + \boldsymbol{C}.\,\boldsymbol{x}(t) = \boldsymbol{f}_{exc} \tag{7.13}$$

A resposta do navio ou do corpo flutuante em cada grau de liberdade para um carregamento harmônico é também harmônica, na mesma frequência e com fase diferente da fase da excitação. Substituindo-se as funções para excitação e resposta na Equação (7.13), chega-se à Eq.(7.14) no domínio da frequência " ω " em notação complexa.

$$\{-\omega^2(\boldsymbol{M} + \boldsymbol{A}(\omega)) + i\omega\boldsymbol{B}(\omega) + \boldsymbol{C}\}.\boldsymbol{U}(\omega, dir) = \boldsymbol{F}(\omega, dir)$$
(7.14)
Sendo:

M = matriz de massa da unidade flutuante de dimensão 6x6;

A = matriz de massa adicionada de dimensão 6x6;

B = matriz de amortecimento hidrodinâmico de dimensão 6x6;

C = matriz de rigidez ou restauração de dimensão 6x6;

U = vetor de deslocamentos de dimensão 6x1, com $U_i = x_i e^{-i(\omega t + \varphi_1)}$. Sendo x_i e φ_i a amplitude e o ângulo de fase de cada movimento, respectivamente;

F = vetor de força hidrodinâmica de dimensão 6x1, com $f_i e^{-i(\omega t + \varphi_{2i})}$;

 $i=\sqrt{-1};$

dir = direção da incidência.

Para o sistema oscilatório indicado na Eq.(7.14), apenas os movimentos de *heave*, *roll* e *pitch* apresentam restauração hidrodinâmica no instante em que o navio é retirado de sua posição de equilíbrio (BATTACHARYYA, 1978). Por analogia, pode-se pensar que, para estes componentes, existe uma mola de rigidez rotacional ou translacional atuando em oposição ao sentido do movimento, tendendo a restaurar a unidade flutuante para a condição de equilíbrio inicial.

Embora não tenha sido mencionado nos textos anteriores, é importante salientar que além do amortecimento potencial, há também o amortecimento viscoso, sendo este de grande relevância no movimento de *roll*, especialmente na faixa de frequências em torno da ressonância.

Os movimentos de *roll* previstos por modelos numéricos geralmente não são exatos. Além disso, o amortecimento potencial representa uma pequena fração do amortecimento total de *roll* que ocorre na realidade. Isso porque outras fontes externas, por exemplo a fricção na superfície do casco, o efeito da bolina, etc., induzem amortecimento viscoso adicional que não pode ser derivado por métodos numéricos.

Na prática, o amortecimento total de *roll*, que inclui o amortecimento potencial e o amortecimento viscoso, é definido em termos de percentagem de amortecimento crítico e pode ser estimado a partir de modelos reduzidos em tanques de prova.

7.2. Função de Transferência ou RAO

Nos capítulos anteriores, foi demonstrado que as ondas reais do oceano são irregulares e que podem ser consideradas como sendo um somatório de grande número de componentes de ondas regulares. Partindo deste princípio, ao colocar uma unidade flutuante no mar, pode-se esperar que os movimentos da unidade flutuante também possuam comportamento irregular, podendo, da mesma forma, ser decompostos em respostas individuais de movimentos para um conjunto de ondas harmônicas.

De forma geral, a resolução da equação do movimento para um conjunto de ondas de amplitude unitária fornece a função de transferência ou o RAO (*Response Amplitude Operator*) para os seis graus de liberdade da embarcação. Assim, tem-se que:

$$RAO(\omega, dir) = \{-\omega^2 (\mathbf{M} + \mathbf{A}(\omega)) + i\omega \mathbf{B}(\omega) + \mathbf{C}\}^{-1} \mathbf{F}(\omega, dir)$$
(7.15)

O RAO pode ser gerado através de modelos numéricos e/ou através de ensaios em tanques de prova com modelos em escala reduzida. A análise numérica geralmente é feita através de *softwares* específicos que utilizam a metodologia apresentada neste capítulo. Uma discussão detalhada acerca do equacionamento e demonstração das forças está para além do âmbito deste documento.

De forma resumida, pode-se dizer que através do RAO são obtidos os movimentos, velocidades e acelerações do navio (resposta dinâmica) para ondas regulares de amplitude unitária com diferentes períodos e ângulos de incidência.

Quando as frequências naturais dos movimentos coincidem com a frequência de excitação das ondas, ocorrem picos de ressonância na função de transferência. Pode haver, ainda, picos não ressonantes, especialmente com esforços globais, tais como momentos fletores de viga navio.

As informações relativas ao RAO são usualmente apresentadas na forma de tabelas e gráficos. A Figura 7.3 mostra um exemplo de RAO para o movimento de *pich*.

Figura 7.3 – RAO de *Pitch*

7.3. Forças Inerciais

Os resultados do RAO são fornecidos no centro de movimentos escolhido para o navio. No entanto, é de grande interesse e necessário obter as componentes de força em qualquer ponto da embarcação que contenha massa.

A Figura 7.4 apresenta um diagrama esquemático para obtenção das forças inerciais resultantes a partir dos dados de movimento no centro de rotação.

Figura 7.4 – Forças inerciais num ponto de massa (Manual Bentley SACS) Para a figura acima, restrita ao plano xz, tem-se:

 $\ddot{\theta}$ = aceleração angular;

$$\ddot{\theta} = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} \tag{7.16}$$

- a = aceleração translacional;
- θ = ângulo de rotação relativo ao movimento;
- $\omega = \dot{\theta}$ = velocidade angular do movimento;
- r = distância do centro de rotação até um ponto qualquer de massa "m";
- α = ângulo referente a um ponto qualquer de massa "m";
- F_a = Força translacional resultante no centro de movimentos, levando em conta a fase de cada componente;
- $\beta = \hat{a}$ ngulo da resultante translacional;
- F_{ω} = Força radial ou força centrífuga;
- $\ddot{\delta}_{\omega}$ = aceleração centrífuga no ponto de interesse;

$$\ddot{\delta}_{\omega} = r\omega^2 \tag{7.17}$$

- F_{θ} = Força tangencial;
- $\ddot{\delta}_{\theta}$ = aceleração tangencial no ponto de interesse.

$$\ddot{\delta}_{\theta} = r\ddot{\theta} \tag{7.18}$$

A partir das definições anteriores, pode-se decompor a força de inércia translacional na direção "x", assumindo um corpo de massa "m". Assim:

$$F_{ax} = m a \cos\left(\beta\right) \tag{7.19}$$

As duas componentes de força devido a aceleração tangencial e radial são, respectivamente:

$$F_{\theta} = m\ddot{\delta}_{\theta} = m(r\ddot{\theta}) \tag{7.20}$$

$$F_{\omega} = m\ddot{\delta}_{\omega} = m(r\omega^2) \tag{7.21}$$

Ao projetar as componentes de força rotacional na direção do eixo "x", vem:

$$F_{\theta x} = m(r\ddot{\theta}sen\,\alpha) \tag{7.22}$$

$$F_{\omega x} = m(r\omega^2 \cos \alpha) \tag{7.23}$$

O vetor das forças resultantes na direção "x", levando em conta o efeito translacional e rotacional, é obtido pelo somatório das equações (7.19), (7.22) e (7.23). Logo:

$$F_x = m \left(a \cos(\beta) + r \ddot{\theta} sen \, \alpha + r \omega^2 \cos \alpha \right) \tag{7.24}$$

De acordo com BATTACHARYYA (1978), a parcela de força inercial oriunda da aceleração centrífuga não é significativa, sendo máxima quando o navio passa pela posição de equilíbrio e nula quando o navio atinge o ângulo máximo de inclinação, durante o movimento rotacional.

Com isso, ao desprezar a parcela centrífuga, a equação final para a direção "x" fica:

$$F_{x} = m \left(a \cos(\beta) + r \ddot{\theta} sen \, \alpha \right) \tag{7.25}$$

Ao considerar a contribuição da força gravitacional na direção paralela ao convés da embarcação na Eq.(7.25), bem como a contribuição da aceleração linear proveniente da aceleração rotacional em torno do eixo "z" vertical, obtém-se:

$$F_{x} = m \left(gsen(\theta) + a\cos(\beta) + r\ddot{\theta}sen(\alpha) + a_{xz}\right)$$
(7.26)

Sendo:

 a_{xz} = aceleração resultante na direção "x" relativa ao movimento de rotação em torno do eixo "z" vertical.

O mesmo procedimento pode ser feito de forma similar para as demais direções "y" e "z".

Nos cálculos de fadiga, há interesse somente na parcela dinâmica dos carregamentos. Por isso, é descontada a parcela da aceleração gravitacional na direção vertical. Para as direções translacionais paralelas ao convés, o efeito gravitacional é mantido para simular a inclinação do corpo.

Os ângulos de rotação são considerados pequenos de tal modo que é possível fazer aproximações em que o seno do ângulo de rotação é igual ao próprio ângulo ($sen\theta \cong \theta$) e o cosseno é igual a unidade ($cos \theta \cong 1$). Assim, pode-se notar que a Eq. (7.26) é uma combinação linear das repostas de movimentos, que são defasadas entre si, sendo os ângulos de fase considerados nesta combinação para todas as direções.

7.4. Respostas de Curto Prazo e de Longo Prazo

Uma vez definida a função de transferência do navio e conhecendo o espectro de estado de mar, conforme já apresentado nos itens anteriores, é possível obter o espectro de resposta em termos de deslocamento, tensão ou qualquer outra grandeza desejada.

No domínio da frequência, o espectro de resposta é obtido através da multiplicação do espectro de mar pelo quadrado da função de transferência, dado por:

$$S_R(\omega) = [RAO(\omega)]^2 S_n(\omega) \tag{7.27}$$

O espectro de resposta fornece todas as informações estatísticas necessárias para o dimensionamento à fadiga de uma unidade marítima. A resposta estatística obtida a partir de um único estado de mar caracteriza uma resposta de curto prazo.

A abordagem de longo prazo, por outro lado, considera, de forma probabilística, todos os estados do mar que podem ocorrer ao longo da vida útil da plataforma. Os estados de mar são usualmente indicados no diagrama de dispersão de ondas que fornece dados
H _s (m)	T_z (second)								
	1-3	3–6	6–9	9–12	12-15	15-18	18-21	21-24	
0–1	12	358	578	162	53	13	2	0	1178
1-2	0	756	2485	673	277	98	14	1	4304
2–3	0	83	1887	893	233	90	12	0	3198
3–4	0	3	646	711	170	34	0	0	1564
4–5	0	0	117	418	146	16	1	0	698
5-6	0	0	12	196	89	7	1	0	305
6–7	0	0	0	59	56	6	0	0	121
7–8	0	0	0	9	25	5	0	0	39
8–9	0	0	0	2	16	4	0	0	22
9–10	0	0	0	0	10	2	0	0	12
10-11	0	0	0	0	0	1	0	0	1
11-12	0	0	0	0	0	1	0	0	1
Sum	12	1,200	5,725	3,123	1,075	277	30	1	11,443

de probabilidade conjunta de alturas significativas de onda e períodos para uma determinada região do mundo, conforme exemplo indicado na Figura 7.5.

Figura 7.5 – Diagrama de dispersão de ondas (KARADENIZ, 2013)

O diagrama de dispersão de ondas é caracterizado por vários dados de ondas de curto prazo medidos ao longo de um amplo período de tempo. Cada estado de mar é representado por diferentes combinações de H_s com T_z ou T_p, incluindo suas respectivas direções de incidência.

Com a resposta espectral de curto prazo para todos os estados de mar, é possível obter a resposta de longo prazo, como será visto adiante.

A resposta de curto prazo é caracterizada por um período de tempo limitado, normalmente de poucas horas, enquanto que a resposta de longo prazo abrange a simulação antecipada de todo o tempo de vida da operação da unidade marítima (CHAKRABARTI, 1987).

O primeiro passo para calcular a resposta de longo prazo é conhecer a distribuição de probabilidades da resposta de cada estado de mar no curto prazo, que pode ser expressa pela função de probabilidade acumulada " $F_i(\sigma_R)$ ". Assumindo processo gaussiano com média nula e espectro de banda estreita, a probabilidade acumulada no curto prazo pode ser conseguida através da distribuição de Rayleigh, dada por:

$$F_i(\sigma_R) = 1 - \exp\left(-\frac{{\sigma_R}^2}{8m_{0i}}\right)$$
(7.28)

Na equação acima, " m_{0i} " representa o momento espectral de ordem "0" relativa ao estado de mar "i", sendo igual a área total do espectro de resposta deste estado mar e " σ_R " uma grandeza qualquer que, neste caso, para o cálculo de fadiga, representa a flutuação de tensão atuante na estrutura. A definição dos momentos espectrais foi apresentada no item 4.4.1.

Cada estado de mar possui uma probabilidade de ocorrência " pw_i " que é resultado do produto da probabilidade de ocorrência da direção de incidência pela probabilidade de ocorrência de cada estado de mar dentro de cada direção de incidência. Estes valores de probabilidade podem ser extraídos do diagrama de dispersão de ondas.

Portanto, pode-se definir que:

$$pw_i = pw_{bloco,\beta} \times pw_{Hs,Tz \ no \ bloco} \tag{7.29}$$

Sendo:

 $pw_{bloco,\beta}$ = probabilidade de ocorrência do bloco de ondas na direção do ângulo " β " em relação a todas as possíveis direções. É obtida diretamente do diagrama de dispersão de ondas;

 $pw_{Hs,Tz no bloco} =$ probabilidade de ocorrência do estado de mar de altura "Hs" com período de cruzamento zero-ascendente "Tz" dentro de cada bloco. É calculada de acordo com a equação abaixo:

$$pw_{Hs,Tz \ no \ bloco} = \frac{N_{ocorHs_iTz_j}}{N_{ocorbloco\beta_k}} \tag{7.30}$$

Onde:

 $N_{ocorHs_iTz_j}$ = número de ocorrências do estado de mar Hs_iTz_j dentro do bloco na direção β_k ;

 $N_{ocorbloco\beta_k}$ = número total de todas as ocorrências de todos os estados de mar dentro do bloco na direção β_k .

No último passo, é introduzido o peso do número de ciclos de cada estado de mar, r_i , dentro da resposta de longo prazo. Se cada estado de mar possui um número de ciclos associado, o peso de cada estado de mar é dado pela relação entre o número de ciclos obtidos no estado de mar de 3h de duração e o número médio de ciclos de todos os estados de mar ponderados pela probabilidade de ocorrência de cada estado de mar. Dessa forma, a equação desse peso fica:

$$r_i = \frac{n_{3hi}}{\sum n_{3hi} p w_i} \tag{7.31}$$

Onde:

 $\sum n_{3hi}pw_i$ = número de ciclos ponderados de todos estados de mar, equivalente a um período médio;

 n_{3hi} = número de ciclos do estado de mar com 3h de duração, sendo igual a:

$$n_{3hi} = \frac{3h \times 3600s}{T_{zR_i}}$$
(7.32)

 T_{zR_i} = período de cruzamento zero-ascendente da resposta, dado por:

$$T_{zR_i} = 2\pi \sqrt{\frac{mr_{0i}}{mr_{2i}}}$$
(7.33)

 mr_{0i} = momento de ordem "0" do espectro de resposta;

 mr_{2i} = momento de ordem "2" do espectro de resposta.

Ao sequenciar todos os passos anteriores, é possível escrever a função de probabilidade da resposta no longo prazo a partir das equações (7.28), (7.29) e (7.31), ficando totalmente compatível com o apresentado na DNV CN 30.7. Assim, tem-se que:

$$F(S) = \sum_{i=1}^{Todos \ estados \ de \ mar(direções)} r_i p w_i F_i(\sigma_R)$$
(7.34)

8. FADIGA

8.1. Conceituação Básica e Tópicos de Mecânica da Fratura

Qualquer estrutura ou componente submetido a carregamentos de natureza cíclica pode ficar suscetível ao fenômeno da fadiga. Quando isto ocorre, pequenas trincas surgem no material, podendo se propagar ao ponto de colapsar a estrutura, mesmo que o nível das tensões atuantes esteja abaixo do limite de escoamento do material.

A fadiga pode ser definida como um mecanismo de falha baseado na formação e no crescimento de trincas geradas por ciclos de tensões de amplitude constante ou de amplitude variável.

A natureza da formação da trinca por fadiga pode ser observada fisicamente através de três estágios distintos: nucleação, crescimento e falha. As regiões que delimitam cada estágio estão ilustradas na Figura 8.1.

Figura 8.1 - Curva de crescimento da trinca (HUGHES e PAIK., 2010)

Na região "A" ocorre a nucleação com ângulo de 45° em relação à direção da tensão principal máxima, sendo preponderante as tensões de cisalhamento. Já na região "B" a trinca muda de comportamento e se propaga perpendicular à direção da tensão principal máxima (ALMAR-NAESS,1985). Por fim, na região "C", o crescimento da trinca ocorre de forma bastante rápida até atingir a falha do material na seção remanescente.

Trincas tendem a se iniciar em regiões de concentração de tensões. No metal base, iniciam-se em irregularidades da superfície e em quinas. Em juntas soldadas, as trincas costumam se iniciar a partir de defeitos pré-existentes, especialmente na margem dos cordões de solda e na raiz, conforme esquematizado na Figura 8.2.

Figura 8.2 – Região de trincas em juntas soldadas (HOBBACHER, 2016)

A taxa de crescimento da trinca está associada ao nível de tensão atuante e é um parâmetro essencial para determinação da vida à fadiga em juntas do tipo soldadas.

Estudos baseados na mecânica da fratura indicam que a taxa de propagação da trinca no segundo estágio, região B, pode ser expressa pela relação semiempírica de *Paris-Ergodan* (Lei de Paris).

$$\frac{da}{dN} = C(\Delta K)^m \tag{8.1}$$

Nesta equação, "*a*" representa a dimensão da abertura trinca, "*N*" o número de ciclos, "*C*" o parâmetro de crescimento da trinca, "*m*" o parâmetro de inclinação da curva ("*C*" e "*m*" são constantes que dependem do material) e " ΔK " a variação do fator de intensidade de tensão em torno da trinca.

O fator de intensidade de tensão "*K*" está associado ao campo de tensões lineares na região em torno da extremidade da trinca, aparecendo nas expressões que definem esse campo, que dependem do campo de tensões que existiria na ausência da trinca e de aspectos geométricos. Este parâmetro é muito importante pois permite estimar a magnitude das tensões em torno da trinca, que é onde ocorre a propagação e a eventual falha do material. Este conceito não pode ser confundido com o de fator de concentração de tensão. O fator de intensidade de tensão controla todo o campo de tensão à frente da trinca enquanto que o fator de concentração de tensão está ligado ao valor da tensão num ponto específico. Este assunto será abordado no item 8.7.

O fator de intensidade de tensão é proporcional ao tamanho da trinca e à função geométrica da mesma, dado por:

$$K = \sigma_{rem} Y(a) \sqrt{\pi a} \tag{8.2}$$

Onde:

 σ_{rem} = tensão remota, assumindo ausência da trinca;

Y(a) = função que define a geometria da trinca;

a = tamanho da trinca, sendo metade do comprimento para trincas internas.

Baseado na equação de Paris, pode se fazer uma aproximação teórica do comportamento da vida à fadiga, conforme mostrado na Figura 8.3:

Figura 8.3 – Curva de crescimento da trinca teórica (HUGHES e PAIK., 2010)

Nota-se que para valores de flutuação de tensão menores que o campo de tensões Δk_{th} , não há propagação da trinca. Ou seja, a simples presença do defeito não significa que ocorrerá falha por fadiga, pois as tensões atuantes não são suficientes para provocar a propagação da trinca até o estágio de falha.

8.2.Curvas SN

Os dados sobre a resistência à fadiga são geralmente apresentados sob a forma de curvas SN obtidas por ensaios experimentais, que mostram, para um determinado tipo de ligação estrutural, o número de ciclos de tensão (N) necessários para causar falhas sob uma determinada variação de tensão com amplitude constante ($\Delta \sigma_c$), sendo definida pela

diferença entre a tensão máxima e a mínima no ciclo (dupla amplitude de tensão ou *stress range*).

O conceito de falha dado pelas curvas SN assume que a trinca é passante, ou seja, a propagação da trinca ocorre ao longo de toda espessura da chapa. Além disso, os modelos de ensaio não capturam o efeito de redistribuição de tensão que pode acontecer em estruturas reais (DNV-RP-C203).

O número de ciclos que gera a falha é registrado para diferentes níveis de tensões e, dessa forma, é montada uma curva em escala logarítmica, composta pela relação entre a variação de tensão e os ciclos que geram a ruptura (Figura 8.4).

Figura 8.4 – Esquemático de curva SN (ALMAR-NAESS, 1985)

Sendo:

N = número de ciclos admissíveis;

 $\Delta \sigma_c$ = variação de tensões de amplitude constante;

m = inverso da inclinação negativa da curva;

 $\log \bar{a} = \text{ponto que intercepta o eixo horizontal.}$

A descrição analítica da curva SN pode ser representada na base logarítmica, de acordo com a Eq. (8.3), ou através da forma não logarítmica pela Eq. (8.4), conforme indicado abaixo:

$$\log N = \log \bar{a} - m \log \Delta \sigma_c \tag{8.3}$$

$$N = \bar{a} \, \Delta \sigma_c^{-m} \tag{8.4}$$

Importante destacar que a maioria das curvas SN indicadas nas normas geralmente são determinadas com dois desvios padrões a menos, para levar em conta a dispersão dos resultados obtidos em laboratório, portanto:

$$\log \bar{a} = \log a - 2.s \tag{8.5}$$

Onde "s" é o desvio padrão do log *a*.

De acordo com ALMAR-NAESS (1985), é possível, em teoria, transformar equação de Paris, dada pela Eq.(8.2), na equação (8.4) da curva SN, de tal modo que haveria uma correlação muito próxima entre a taxa de crescimento da trinca e a curva SN de uma inclinação. Para tanto, faz-se a integração da Eq.(8.2), obtendo a seguinte equivalência:

$$\int_{a_i}^{a_f} \frac{da}{Y(a)\sqrt{\pi a}} = CN\Delta\sigma_c^{\ m} \tag{8.6}$$

Onde:

 a_i = tamanho inicial da trinca;

 a_f = tamanho final da trinca.

Isto significa que, em princípio, é possível construir curvas SN para diferentes detalhes com base na mecânica da fratura, se estiverem disponíveis funções geométricas da trinca adequadas para o detalhe em consideração e, sobretudo, o tamanho inicial da trinca (DNV-RP-C210).

As diversas curvas SN propostas pelas normas são construídas tendo como base alguns parâmetros, dentre os quais podem-se citar:

- Tipo de material e peça (exemplo: aço, laminadas, fundidas, forjadas, aço inox, etc.);
- Ambiente (exemplo: estruturas no ar com proteção por pintura, no mar com proteção catódica e sob corrosão livre);
- Direção da tensão em relação a solda;
- Geometria da ligação;
- Tensão de escoamento do material;

• Nível de temperatura.

Na Figura 8.5, são apresentadas as curvas SN de fadiga da DNV-RP-C203 para estruturas localizadas no ar. Cada curva representa um tipo de detalhe ou um tipo de ligação. As curvas superiores admitem maior ciclo de tensão quando comparadas às inferiores.

Figura 8.5 – Curvas SN no ar (DNV-RP-C203)

Pode-se observar ainda, a partir da Figura 8.5, que as curvas de fadiga mudam de inclinação a partir de um determinado número de ciclos (10⁷ ciclos para curva da DNV no ar). O segundo trecho da curva SN foi introduzido para levar em conta a variabilidade de amplitude de tensão, típico de estruturas marítimas. Dessa forma, nenhum ciclo de tensão é desprezado no cálculo do dano.

A norma DNV-RP-C203 permite a utilização de um limite de fadiga para uma tensão associada a 1E+7 ciclos. Porém, deve ser garantido e demonstrado que nenhum desses ciclos de tensão esteja acima da tensão limite, levando em conta a redução dessa tensão limite em função do fator de segurança. Caso contrário, a análise de fadiga precisa ser realizada. Essa preocupação se justifica por conta da sequência de tensões de amplitude variável que ocorre na estrutura. Se alguma tensão for superior ao limite, pode ocorrer fissura ou trinca no material, deslocando a tensão limite para um valor inferior.

8.3.Conceito de Dano e Vida à Fadiga

Ao longo da vida útil da estrutura ocorrem acúmulos de danos provocados pelo efeito da fadiga. O dano pode ser quantificado através da equação:

$$\mathsf{D} = \frac{n}{N} \tag{8.7}$$

Sendo:

n = número de ciclos atuante para um determinado nível de variação de tensão na vida requerida;

N = número de ciclos que leva à falha estrutural da junta submetida variação de tensão com amplitude constante, obtido da curva SN.

Na prática, muitas estruturas experimentam diversas amplitudes de tensões, de modo que a tensão não fica limitada a uma única faixa constante de tensão. Para tais estruturas, o projeto de fadiga é normalmente realizado com base na regra de *Palmgren-Miner*, que afirma que o dano total por fadiga pode ser encontrado através da soma individual dos danos de cada faixa de variação de tensão. E para que não ocorra a falha, o somatório dos danos não pode ser maior do que a unidade.

$$\mathbf{D} = \frac{n_1}{N_1} + \frac{n_2}{N_2} + \frac{n_3}{N_3} + \dots + \frac{n_i}{N_i} = \sum_i \frac{n_i}{N_i} \le 1.0$$
(8.8)

A vida a fadiga, por sua vez, é calculada a partir da razão entre a vida requerida para o projeto e o dano obtido nesse período.

$$V = \frac{V_p}{D}$$
(8.9)

Onde:

V = vida calculada;

 V_p = vida requerida para o projeto;

D = dano na vida de projeto.

8.4. Fator de Fadiga

O fator de fadiga (*DFF - Design Fatigue Factor*) é um fator de segurança aplicado na vida de projeto requerida ou para reduzir o dano permissível da estrutura, com objetivo de aumentar o nível de confiabilidade, contemplando as incertezas dos cálculos de projeto. Este fator está associado tanto ao grau de importância do elemento estrutural quanto à possibilidade de acesso ao detalhe estrutural para inspeção com a unidade em operação.

O grau de importância do elemento estrutural depende da consequência de falha e do impacto causado na segurança da estrutura marítima. Elementos estruturais considerados críticos, como, por exemplo, algumas ligações localizadas no casco, geralmente exigem fator de segurança à fadiga maiores do que elementos estruturais menos críticos localizados no *topside*.

A possibilidade de inspeção da junta soldada, como dito, também é levada em consideração na determinação do fator de segurança à fadiga. Juntas soldadas que são acessíveis para inspeção e reparo podem ser projetadas com fator de segurança à fadiga menores quando comparadas às que são inacessíveis para inspeção e reparo.

As sociedades classificadoras e as empresas petroleiras usualmente estabelecem fatores de segurança à fadiga que devem ser considerados nos projetos de estruturas marítimas. Na Tabela 8.1 estão reproduzidos os valores sugeridos pela classificadora ABS.

Importâncio	Grau de acessibilidade para inspeção e reparo						
Importancia	Acesso Seco	Acesso Submerso	Inacessível				
Não Crítica	2	3	5				
Crítica	3	5	10				

Tabela 8.1 – Fator de fadiga

Quando a junta é considerada não crítica e totalmente acessível (sem necessidade de atividades de mergulho) para inspeção e reparo, a classificadora ABS permite relaxação no valor de 2 para 1.

8.5.Influência da Espessura

Resultados obtidos por experimento evidenciam que a resistência à fadiga é dependente da espessura da amostra. Neste contexto, percebe-se que ocorre uma relação inversa, ou seja, à medida que aumenta espessura da chapa em estudo, a resistência à fadiga diminui, mantendo-se, obviamente, os demais parâmetros do ensaio, especialmente a tensão atuante.

De modo a considerar este efeito do tamanho (*size effect*) nos cálculos de fadiga, é utilizada a fórmula de correção da tensão, conforme indicada a seguir:

$$\Delta\sigma_{cor} = \Delta\sigma \left(\frac{T}{t_{ref}}\right)^k \tag{8.10}$$

Onde:

 $\Delta \sigma$ = flutuação de tensão obtida para a junta em análise;

 $\Delta \sigma_{cor}$ = flutuação de tensão corrigida pela espessura;

 t_{ref} = espessura de referência;

T = espessura da junta considerada;

k = fator de correção da espessura.

A correção somente pode ser aplicada quando $T > t_{ref}$.

8.6.Efeito de Desalinhamento

Durante o processo de fabricação e construção podem ocorrer desalinhamentos nas ligações estruturais. Tais distorções induzem o aparecimento de tensões secundárias, aumentando, dessa forma, o nível de tensões nas juntas soldadas.

Em geral, as curvas SN normativas já consideram um certo nível de desalinhamento construtivo nas juntas soldadas. No entanto, para valores superiores ao indicado por estas normas, é necessário contabilizar individualmente este efeito geométrico nos cálculos de fadiga.

Algumas fórmulas utilizadas pela DNV-RP-C203 para o cálculo do fator de concentração de tensão devido a desvios construtivos estão listadas nos subitens adiante.

8.6.1. Solda de Topo com Chapas de Mesma Espessura

Nos casos em que há um desalinhamento entre chapas de mesma espessura com solda de topo, o fator de concentração de tensão pode ser calculado de acordo com a Eq. (8.11).

$$SCF = 1 + \frac{3(\delta_M - \delta_0)}{T} \tag{8.11}$$

Onde:

 δ_M = máximo desalinhamento existente;

 δ_0 = desalinhamento embutido na curva SN.

T = espessura da chapa;

8.6.2. Solda de Topo com Chapas de Diferentes Espessuras.

Se as chapas soldadas têm espessuras distintas e estão alinhadas por uma das faces, o valor do fator de concentração de tensão é dado pela equação adiante:

$$SCF = 1 + \frac{6(\delta_M + \delta_t - \delta_0)}{t \left[1 + \frac{T^{1.5}}{t^{1.5}}\right]}$$
(8.12)

Onde:

 δ_t = excentricidade devido a mudança de espessura $\frac{1}{2}(T-t)$;

T = espessura da chapa mais espessa;

t = espessura da chapa menos espessa.

8.6.2.1. Soldas em Junta Cruciforme

Juntas do tipo cruciforme ocorrem quando há cruzamento entre duas chapas não enrijecidas. Nessa situação, uma das chapas fica passante e a outra chapa fica dividida em duas partes. As partes divididas podem ficar desalinhadas entre si, representadas na Figura 8.6 pelas chapas t_1 e t_2 , gerando tensões adicionais devido ao momento fletor local. O cálculo do fator de concentração de tensão para esses casos é dado por:

$$SCF = 1 + \frac{6t_i^2(\delta - \delta_0)}{l_i \left[\frac{t_1^3}{l_1} + \frac{t_2^3}{l_2} + \frac{t_3^3}{l_3} + \frac{t_4^3}{l_4}\right]}$$
(8.13)

Figura 8.6 – Junta cruciforme (DNV-RP-C203)

 δ_0 = desalinhamento embutido na curva SN;

 δ = desalinhamento e/ou excentricidade.

Um exemplo típico de junta do tipo cruciforme em módulos de *topside* é a ligação entre chapas *gusset* e vigas de apoio. Neste detalhe, a chapa *gusset* e a alma da viga ficam representadas pelas chapas t_1 e t_2 da Figura 8.6 e o flange da viga pelas chapas t_3 e t_4 da mesma figura.

8.7. Tensões Para o Cálculo de Fadiga

8.7.1. Tipos de Tensões

A análise de fadiga pode se basear em três tipos de tensões distintas, quais sejam: tensão nominal, tensão geométrica (*hot spot stress*) e tensão de entalhe (*notch stress*). A definição encontra-se descrita adiante.

a) Tensão nominal

A tensão nominal é obtida de forma analítica usando a teoria de viga de Euler-Bernoulli. As tensões são calculadas com base nas propriedades geométricas da seção transversal do componente, no ponto de interesse, sem considerar o efeito da solda e da mudança brusca de geometria no detalhe estrutural. A maioria das curvas SN são baseadas em tensões nominais e os fatores de concentração ficam embutidos nestas curvas. Para cada tipo de detalhe estrutural existe uma curva associada.

b) Tensão geométrica (hot spot stress)

A tensão geométrica se caracteriza pelo maior valor de tensão extraído no ponto da estrutura mais propenso a iniciação da trinca (*hot spot point*). Diversas normas propõem abordagens técnicas para obtenção da tensão geométrica pelo método de *hot spot*, utilizando modelos matemáticos em elementos finitos, como é o caso, por exemplo, da classificadora DNV. A tensão calculada a partir deste método considera as descontinuidades geométricas da ligação, porém exclui o efeito local da solda existente. A curva SN utilizada na metodologia de *hot spot* é unificada para todos os detalhes estruturais na margem da solda e não possui fator de concentração embutido, uma vez que deve ser definido pelo resultado da análise em elementos finitos, conforme procedimento consistente, como será visto.

c) Tensão de entalhe (*notch stress*)

A extremidade de uma solda se comporta como um entalhe local que gera uma distribuição de tensão não linear ao longo da espessura. A tensão de entalhe consiste na soma da tensão geométrica (que já leva em conta a tensão nominal) e do pico de tensão não linear.

A tensão de entalhe depende do tamanho e do formato real da solda, o que torna praticamente impossível sua previsão durante a fase de projeto.

Em casos especiais, onde não é possível e confiável avaliar a vida à fadiga pela tensão nominal ou pela tensão geométrica, pode-se recorrer ao cálculo da tensão de *notch*.

De acordo com a DNV-RP-C203, a tensão de *notch* pode ser obtida por modelos em elementos finitos refinados, associada a curvas específicas, considerando a solda com extremidade radial de 1mm, conforme Figura 8.7.

Figura 8.7 – Modelagem de entalhe para Notch Stress (DNV-RP-C203)

O método apresentado acima, referente ao cálculo da tensão de entalhe, é restrito à avaliação de juntas soldadas com espessura da chapa maior ou igual a 5 mm. Além disso, não pode ser utilizado nos casos em que existe tensão significativa atuante na direção paralela ao eixo da solda.

Para efeito de modelagem, a mesma regra recomenda utilizar ângulos de 30 e 45 graus para soldas de topo e filete, respectivamente.

8.7.2. Descrição das Tensões

Para facilitar o entendimento dos tipos de tensões, pode-se tomar como exemplo a ligação soldada indicada na figura abaixo. Nesta imagem, uma chapa plana de comprimento "L" (*attachment plate*) está soldada sobre outra, e a força "F" atua na chapa inferior.

Figura 8.8 – Definição de tipos de tensão em junta soldada (LASSEN e RECHO, 2006).

Supõe-se que a ligação entre os dois elementos é feita através de um cordão de solda que possui ângulo de abertura igual a "θ" e raio de acabamento na margem igual a "ρ". A espessura da chapa inferior possui dimensão "T" e está submetida ao esforço de tração "F".

É sabido que o ponto de iniciação da trinca ocorre na extremidade superior da seção transversal A-A. Nesta região, pode-se perceber a existência das tensões geométricas e de entalhe (tensão devido à solda), $\sigma_g e \sigma_w$ respectivamente.

A tensão nominal "S", por sua vez, pode ser identificada, de forma isolada, a uma certa distância da seção "A-A", quando não há mais efeito das tensões geométrica e das tensões devido à solda, localizada na figura pela seção "B-B".

A relação entre a tensão geométrica e a tensão nominal fornece o valor do fator de concentração de tensão geométrica " K_g ". Do mesmo modo, a relação entre a tensão de entalhe e a tensão geométrica fornece o fator de concentração de entalhe " K_w ".

$$K_g = \frac{\sigma_g}{S} \tag{8.14}$$

$$K_w = \frac{\sigma_w}{\sigma_g} \tag{8.15}$$

Agrupando os dois fatores de concentração em um único fator " K_t ", tem-se o valor do fator de concentração total, portanto:

$$K_g K_w S = K_t S \tag{8.16}$$

O efeito da chapa isolada, sem a presença da solda, apenas por estar ligada à chapa inferior, gera amplificação da tensão nominal, devido a mudança de geometria. Este efeito geométrico pode ser avaliado e identificado através de modelos em elementos finitos, desde que esteja de acordo com critérios de refinamento de malha e outras metodologias estabelecidas por normas e sociedades classificadoras.

O valor da tensão de entalhe, por sua vez, depende do ângulo " θ " da solda e principalmente da relação " ρ/T ". Para minimizar o efeito da concentração de tensão de entalhe é necessário reduzir o valor do ângulo da solda e/ou, principalmente, aumentar a relação entre o raio da solda e a espessura da chapa (LASSEN e RECHO, 2006).

Este artificio de alterar a relação entre o raio da solda e a espessura da chapa é utilizado quando há necessidade de melhoria na resistência à fadiga. Embora não seja uma recomendação direta para a fase de projeto, existe certa flexibilização de utilização por parte das regras das classificadoras. Os três principais métodos de melhoria construtiva da ligação soldada são o esmerilhamento, o tratamento por TIG (*Tungsten Inert Gas*) e a martelagem.

Quanto a seleção das curvas SN, é importante observar o tipo de tensão calculada. Se foi utilizada, por exemplo, a tensão nominal, não pode ser selecionada a curva para tensão de *hot spot*. Este tipo de equívoco conduziria a um resultado totalmente incorreto, o que deve ser observado com cautela nas análises de fadiga.

8.7.3. Obtenção da Tensão de Hot Spot

Conforme indicado no item anterior, define-se como *hot spot stress* a tensão que surge na superfície do material, no ponto suscetível à nucleação de trinca, gerada pela mudança brusca na geometria do elemento estrutural, sem considerar o efeito da presença de solda.

Em elementos estruturais compostos por chapas, três posições de pontos de *hot spot* podem ser identificadas, conforme indicado na Figura 8.9, sendo, neste caso, os pontos "a", "b" e "c".

Figura 8.9 – Pontos de hot spot (DNV-RP-C203).

A DNV-RP-C203 não recomenda a utilização da metodologia de *hot spot* com elementos finitos de casca para juntas cruciformes simples, juntas no formato "T" simples

e juntas de topo com solda por um dos lados, nas situações em que a tensão resultante no ponto de *hot spot* é igual a tensão nominal.

A justificativa para a recomendação citada acima encontra amparo na própria limitação do tipo de elemento finito empregado na análise, pois não é capaz de capturar a correta distribuição de tensão na ligação, levando a resultados contra a segurança.

Para melhor explicação e consolidação, toma-se o exemplo apresentado na mesma regra da DNV, conforme ilustrado na Figura 8.10.

Figura 8.10 – Diferentes fluxos de tensões para pontos de hot spot (DNV-RP-C203)

Na figura acima, não há enrijecedor da chapa na direção I, tal como apresentado na Figura 8.9. Supondo modelagem em elementos finitos do tipo casca, as tensões atuantes na direção I não migram para a chapa vertical (*attachment plate*). Porém, é esperado e sabido que parte da tensão seja atraída para essa chapa, o que poderia ser facilmente comprovado através de modelo em elementos finitos do tipo sólido. Neste caso, ao invés de utilizar a curva D com tensão de *hot spot*, deve-se recorrer a metodologia de tensão nominal com seleção de curva SN apropriada.

A análise de fadiga pode ser baseada em resultado de modelos em elementos finitos, utilizando a metodologia de tensão de *hot spot*. A tensão de *hot spot* é a tensão geométrica ou tensão estrutural, sendo, portanto, igual a:

$$\sigma_{hot} = K_g S = SCF. \,\sigma_{nom} \tag{8.17}$$

Onde:

 $SCF = K_g = Stress \ Concentration \ Factor$ (fator de concentração de tensão); $\sigma_{hot} = tensão de \ hot \ spot;$ $\sigma_{nom} = S = \text{tensão nominal.}$

De modo conservador, as tensões principais podem ser utilizadas no cálculo de fadiga em juntas soldadas, quando o ângulo de alinhamento da tensão máxima é pequeno, tendo como referência uma linha imaginária perpendicular ao eixo da solda (DNV-RP-C203). Esta limitação se fundamenta no comportamento físico da iniciação e da propagação da trinca, conforme explicado adiante.

Quando o ângulo da tensão principal máxima é pequeno, a trinca tende a se propagar na margem do cordão de solda. Contudo, quando o ângulo de abertura é muito grande, a propagação da trinca ocorre na direção paralela à direção da tensão principal máxima, sendo, neste caso, uma condição mais favorável (Figura 8.11). Nesta situação, a tensão não-linear gerada pelo entalhe da solda não contribui de forma significativa à redução da resistência à fadiga.

Figura 8.11 – Comportamento da trinca (LOTSBERG, 2016).

A DNV-RP-C203 permite que a tensão de *hot spot* seja definida por meio de modelos em elementos finitos de casca ou sólido. Dois métodos podem ser utilizados, a saber:

- A) Extrapolação linear das tensões encontradas em dois elementos finitos adjacentes, distantes de 0,5t e 1,5t do ponto de concentração de tensão, sendo "t" a espessura do elemento, conforme Figura 8.12. Neste caso, deve ser usada a curva D;
- B) Extração direta da tensão num ponto localizado a uma distância de 0,5t do ponto de concentração de tensão, sem a necessidade de extrapolação. Neste caso, deve ser usada a curva D com fator de 1,12, sendo equivalente à curva E.

Figura 8.12 – Método de Hot Spot (DNV-RP-C203).

Importante ressaltar que o método de *hot spot* somente pode ser utilizado quando a probabilidade de falha ou de surgimento da trinca ocorre na margem do cordão da solda, para juntas de penetração parcial e para juntas de filete. Em soldas de penetração total sem acesso pela raiz, as regras de sociedades classificadoras estabelecem critérios específicos de análise, como é o caso, por exemplo, da ligação estrutural abordada no estudo de caso que será apresentada no Capítulo 9.

A situação não aceitável se refere à trinca que surge na raiz da solda (Figura 8.2 f, g, h, i e j). Nesta condição, a trinca é muito difícil de ser detectada, mesmo por ensaios não destrutivos, sendo somente percebida em estágio já avançado, quando possivelmente existirá comprometimento da ligação. Por esta razão, juntas de filete e do tipo parcial não são recomendadas em ligações estruturais de grande importância, especialmente quando estão submetidas a esforços de arrancamento.

8.8. Cálculo do Dano por Fadiga: Método Simplificado

A análise de fadiga simplificada parte da premissa de que a distribuição de tensões flutuantes que ocorrem na estrutura pode ser representada de forma probabilística pela função de distribuição de Weibull. Ou seja, a partir de uma tensão de referência normalmente calculada no curto prazo, obtém-se a distribuição de probabilidade no longo prazo.

Este método de análise usualmente é empregado nas fases iniciais de projeto para triagem de juntas mais suscetíveis a falha por fadiga. Por ser um método conservador, se o cálculo da resistência à fadiga estiver adequado, não há necessidade de realizar a análise espectral, sendo aceito pelas sociedades classificadoras.

Assim, para que seja possível calcular o dano pelo método de fadiga simplificado é necessário conhecer a tensão máxima de curto prazo no período de retorno associado. Esta tensão, usualmente, é obtida de uma análise estrutural quase-estática na condição centenária, onde são consideradas somente as parcelas dinâmicas (cíclicas) dos carregamentos ambientais. A análise quase-estática somente pode ser utilizada quando a estrutura não é dinamicamente sensível aos carregamentos cíclicos, isto é, quando não há amplificação dinâmica dos esforços. Caso contrário, torna-se necessário incluir a resposta dinâmica no cálculo da tensão máxima à fadiga. Os módulos de *topside*, de uma forma geral, são muito rígidos e pouco sensíveis aos efeitos dinâmicos, o que permite, deste modo, utilizar a análise quase-estática nas fases de projeto.

Além da tensão máxima, é necessário definir: o tipo de curva SN que será utilizada no dimensionamento, o número de ciclos, o fator de concentração de tensões, o período de cruzamento zero-ascendente, o fator de segurança à fadiga, a espessura do elemento soldado e, principalmente, o parâmetro de forma de Weibull.

No método simplificado de avaliação da fadiga, a distribuição de Weibull de dois parâmetros é utilizada para modelar a distribuição de longo prazo das tensões. A função de distribuição cumulativa de tensões pode ser expressa como:

$$F(\Delta\sigma) = 1 - \exp\left[-\left(\frac{\Delta\sigma}{q}\right)^{h}\right]$$
(8.18)

Sendo:

 $\Delta \sigma$ = amplitude dupla de tensão;

F = função de distribuição de probabilidade cumulativa;

- h = parâmetro de forma;
- q = parâmetro de escala.
- O parâmetro de escala da distribuição é dado pela seguinte expressão:

$$q = \frac{\Delta \sigma_0}{\left(\ln n_0\right)^{1/h}} \tag{8.19}$$

Sendo:

 n_0 = número de ciclos associado ao período de retorno da tensão de referência " $\Delta \sigma_0$ ";

 $\Delta \sigma_0$ = tensão de referência (amplitude dupla) para um certo período de retorno (por exemplo: 100 anos).

Assumindo que o histograma de tensões de longo prazo é compatível com a distribuição de Weibull, a expressão do cálculo do dano pode ser definida pela Eq. (8.20), também apresentada em LASSEN e RECHO (2006), pressupondo a regra de Miner de soma linear de danos parciais.

$$D = \int_{\Delta\sigma=0}^{\infty} \frac{n.f(\Delta\sigma)d\Delta\sigma}{\bar{a}/_{\Delta\sigma}m}$$
(8.20)

Na equação acima, os termos "ā" e "*m*" representam os parâmetros da curva SN utilizada, "*n*" o número de ciclos atuantes na vida útil da unidade, e $f(\Delta \sigma)$ a função de densidade de probabilidade dada pela Equação (8.21).

$$f(\Delta\sigma) = \frac{dF(\Delta\sigma)}{d\Delta\sigma} = \frac{h}{q} \left(\frac{\Delta\sigma}{q}\right)^{h-1} \exp\left(-\frac{\Delta\sigma}{q}\right)^{h}$$
(8.21)

A solução da integral indicada na Eq.(8.20) é obtida com a introdução de uma variável auxiliar $t = (\Delta \sigma/q)^h$ e com o auxílio da função Gama Γ . Desse modo, fazendo as operações matemáticas necessárias, obtém-se a fórmula fechada do dano para curva SN com uma inclinação:

$$D = \frac{n}{\bar{a}} q^m \Gamma(1 + m/h)$$
(8.22)

Para curva SN de duas inclinações, a equação do dano é dada por:

$$D = \frac{n \cdot q^{m_1}}{\bar{a}_1} \Gamma\left(1 + \frac{m_1}{h}; \left(\frac{S_1}{q}\right)^h\right) + \frac{n \cdot q^{m_2}}{\bar{a}_2} \gamma\left(1 + \frac{m_2}{h}; \left(\frac{S_1}{q}\right)^h\right)$$
(8.23)

Sendo:

 S_1 = tensão para a qual ocorre a mudança de inclinação da curva SN;

 \bar{a}_1 , m_1 = parâmetros de fadiga da curva SN para n° de ciclos menor que 10⁷, para detalhe no ar;

 \bar{a}_2 , m_2 = parâmetros de fadiga da curva SN para n° de ciclos maior que 10⁷, para detalhe no ar;

 Γ = Função Gama incompleta complementar;

 $\gamma =$ Função Gama incompleta.

As funções gama são expressas por:

$$\Gamma(k,z) = \int_{z}^{\infty} e^{-x} x^{k-1} dx$$
 (8.24)

$$\gamma(k,z) = \int_0^z e^{-x} x^{k-1} dx$$
 (8.25)

O número de ciclos " n_0 " associado ao período de retorno do ciclo de tensão extrema não precisa ser igual ao número de ciclos "n" utilizado na Eq. (8.20). Porém, este último precisa ser grande o suficiente para representar corretamente a distribuição, de modo a manter o parâmetro de escala constante (LASSEN e RECHO, 2006).

O parâmetro de forma de Weibull possui enorme influência no resultado da resistência a fadiga. Quanto maior o parâmetro, menor é a vida, para uma mesma tensão de referência. O gráfico da Figura 8.13, plotado em escala logarítmica, apresenta resultados em termos de vida de projeto para diferentes valores de parâmetros de forma.

Figura 8.13 – Vida calculada e parâmetro de forma de Weibull.

O gráfico foi construído com os seguintes dados:

- Amplitude dupla de tensão de referência = 200 MPa;
- N° de ciclos = 1E+8;
- Período médio = 8s;
- Fator de concentração de tensões = 1;
- Fator de fadiga = 2;
- Espessura da chapa = 25 mm;
- Curva "D" da DNV-RP-C203 no ar.

Conforme esperado, o valor da vida sofre bastante alteração para um pequeno incremento no valor do parâmetro de forma de Weibull. Neste caso, por exemplo, a simples alteração do parâmetro do valor de 0,8 para 0,9 (aumento de ~11%) implica significativa redução da vida em 54% (de 232 para 107 anos). Isto demonstra, claramente, a importância da correta seleção do parâmetro, pois pode gerar erros grosseiros na avaliação da resistência à fadiga.

A DNV CN 30.7 sugere que o cálculo do parâmetro de forma de Weibull seja realizado a partir da Eq. (8.26), para a região das longitudinais do convés do navio, quando não há informação disponível.

$$h = 2,21 - 0,54 \log_{10}(L_n) \tag{8.26}$$

Sendo:

 L_n = comprimento do navio (m);

Para efeito de utilização do método simplificado, a frequência média de cruzamento zero-ascendente no longo prazo " v_0 " é calculada por:

$$\nu_0 = \frac{1}{4 \log_{10}(L_n)} \tag{8.27}$$

Por consequência, o período médio de longo prazo, que permitirá o cálculo do número de ciclos atuantes "n", pode ser calculado a partir da Eq. (8.27), sendo:

$$T_m = \frac{1}{\nu_0} \tag{8.28}$$

8.9. Cálculo do Dano por Fadiga: Método Espectral

O principal objetivo da análise de fadiga é garantir que as estruturas possuam capacidade de resistir aos esforços cíclicos que ocorrerão durante o tempo de utilização da unidade marítima. Na análise espectral, para cada estado de mar, são calculadas as respostas dinâmicas da embarcação, o histórico de tensões e o respectivo dano à fadiga. Os danos gerados por todos estados de mar são somados de forma a prever o dano total acumulado e, consequentemente, a vida de projeto da unidade estacionária de produção. A avaliação da fadiga espectral para um ponto de uma junta pode ser resumida através dos seguintes passos:

- I. Definir os estados de mar que ocorrerão durante a vida da plataforma;
- II. Definir o RAO de tensões;
- III. Realizar o cruzamento do espectro de onda que ocorre num estado de mar com o RAO para obter o espectro de resposta de tensão;
- IV. Adotar uma distribuição de probabilidades de tensão associada ao espectro de resposta do item III e calcular o número de ciclos de tensão para este estado de mar;
- V. Calcular o dano por fadiga, indicando a perda de resistência à fadiga das juntas ou o quanto da capacidade é "consumida" por este estado do mar;
- VI. Calcular o dano total repetindo os passos III, IV e V para todos os estados de mar.

Os estados de mar que ocorrerão na vida útil da unidade são extraídos do diagrama de dispersão de ondas, conforme descrito no item 7.4, na análise de longo prazo. Cada estado de mar é representado através de seu espectro, conforme definido no item 6.4.

A resposta estrutural para cada estado de mar é conseguida através do cruzamento do espectro com a função de transferência de tensão. Essa função deve ser obtida para duas posições da onda defasadas de 90°, de forma a considerar a contribuição de cada componente de força na excitação harmônica e consequentemente na resposta estrutural.

Conforme indicado no item IV, para realizar a análise de fadiga é necessário conhecer os ciclos de tensões para cada estado de mar. Segundo CHAKRABARTI (1987), cada faixa de flutuação de tensão está associada a um certo nível de probabilidade

de ocorrência, pois a natureza do processo é aleatória e contínua. Esta distribuição de probabilidades cumulativa é dada pela Eq. (7.28).

Por consequência da definição, a derivada da Eq.(7.28) fornece a função de densidade de probabilidades da flutuação de tensão. Neste caso, tem-se a seguinte expressão:

$$f_i(\Delta\sigma) = \frac{\Delta\sigma}{4RMS_i^2} \exp\left(-\frac{\Delta\sigma^2}{8RMS_i^2}\right)$$
(8.29)

Onde:

 $RMS_i = Root Mean Square$ de tensão do estado de mar "*i*", dado por:

$$RMS_i = \sqrt{m_{0i}} \tag{8.30}$$

Na equação acima, o valor de RMS representa o desvio padrão do sinal gaussiano com média zero.

BAI e JIN (2016) demonstram que, com a frequência de cruzamento zeroascendente " v_{0i} ", representada pelo inverso da Eq. (7.33), e o período total em segundos na vida útil da unidade " T_{vida} ", pode-se obter o dano "D" para um estado de mar "i", como se somente ele ocorresse durante a vida útil, para curva de fadiga SN de uma inclinação, dado por:

$$D_{i} = \frac{\nu_{0i} \cdot T_{vida}}{\bar{a}} \left(8m_{0i}\right)^{m/2} \Gamma\left(1 + \frac{m}{2}\right)$$
(8.31)

Ao considerar a probabilidade de ocorrência de todos os estados de mar, conforme já mencionado no item 7.4, pode-se formular a equação do dano, sendo igual a:

$$D = \sum_{i}^{Estados \ de \ Mar} pw_{i} \frac{v_{0i} \cdot T_{vida}}{\bar{a}} (8m_{0i})^{m/2} \Gamma\left(1 + \frac{m}{2}\right)$$
(8.32)

A Equação (8.32) está associada à curva SN de uma inclinação. Para curva SN de duas inclinações, BAI e JIN (2016) apresentam a seguinte equação:

$$D = \sum_{i}^{Estados \ de \ Mar} pw_{i} \frac{v_{0i} \cdot T_{vida}}{\bar{a}_{1}} (8m_{0i})^{m_{1}/2} \Gamma\left(1 + \frac{m_{1}}{2}, z\right) + \sum_{i}^{Estados \ de \ Mar} pw_{i} \frac{v_{0i} \cdot T_{vida}}{\bar{a}_{2}} (8m_{0i})^{m_{2}/2} \gamma\left(1 + \frac{m_{2}}{2}, z\right)$$
(8.33)

Onde:

$$z = \left(\frac{S_1}{2\sqrt{2m_{0i}}}\right)^2 \tag{8.34}$$

As formulações de dano, conforme apresentadas acima, partem da premissa de que o espectro de mar é de banda estreita. Contudo, quando há interesse de reduzir o conservadorismo nos resultados, pode-se recorrer a formulações de correção de largura de banda, que levam em conta ajustes nas contagens de ciclos (WANG, 2009), ou a uma contagem de ciclos diretamente nos sinais temporais obtidos de realizações a partir dos espectros de resposta.

8.10. Calibração dos Parametros de Longo Prazo

Os parâmetros da distribuição de Weibull, normalmente adotada para a distribuição de longo prazo das respostas, podem ser obtidos por duas maneiras principais: calibração direta ou calibração reversa.

8.10.1. Calibração Reversa

Na calibração reversa, é feita uma compatibilização do dano da análise estocástica com o da análise simplificada, ajustando-se o parâmetro de forma de Weibull, o que requer a realização de duas análises de fadiga para a mesma estrutura utilizando as duas formas de abordagem.

Primeiro, realiza-se a análise estocástica da estrutura, que fornece o dano total e o número de ciclos no longo prazo para um ponto de uma junta.

Na sequência, obtém-se a tensão de referência, considerando carregamentos quase estáticos, a partir de uma análise linear elástica, desconsiderando o efeito gravitacional estático.

Com os dados de tensão de referência, o dano e o número de ciclos da análise espectral, calcula-se, de forma iterativa, utilizando a formulação fechada da metodologia simplificada, os parâmetros de forma Weibull que produzem o mesmo nível de dano da análise estocástica.

O fluxograma do processo de calibração pode ser visualizado na Figura 8.14.

Figura 8.14 – Fluxograma de calibração reversa

O processo requer como entrada de dados a tensão de referência, o dano e número de ciclos. Em seguida, é estabelecida uma precisão desejada para os resultados, que neste caso é na ordem de 10⁻³ ou 10⁻⁴. Nesta programação, os parâmetros de Weibull são gerados aleatoriamente dentro de um intervalo pré-definido. Após isso, o cálculo do dano é realizado conforme descrito no item 8.8. Na sequência, é verificada a diferença entre o dano calculado e o dano obtido na análise espectral. Caso a diferença seja menor que a precisão requerida, o resultado do parâmetro de Weibull correspondente é impresso, representando o valor final calibrado.

O número de ciclos utilizado na calibração pode ser definido a partir do número de ciclos da resposta de tensão da análise espectral, mas também pode ser definido via formulação de regra de sociedade classificadora. Em geral, nos projetos de engenharia, são utilizados os valores de regra, o que permite unificar o número de ciclos para todas as juntas, o que foi adotado neste trabalho.

8.10.2. Calibração Direta

A calibração direta dos parâmetros de Weibull pode ser conseguida através da transformação logarítmica da distribuição de Weibull, de modo a obter uma relação linear entre o logaritmo das tensões e o logaritmo da função de probabilidade cumulativa de Weibull dos mesmos ciclos de tensões. Este método também foi apresentado por SOARES e MOAN (1991) e utilizado por BARDANACHVILI (2004), conforme listado na bibliografia desta dissertação.

A partir da função de distribuição cumulativa, conforme apresentado na Eq.(8.18), realiza-se a transformação através dos passos "a" e "b" listados adiante:

a) Aplicação do primeiro logaritmo neperiano (*ln*) em ambos lados da Eq. (8.18),
 o que resulta em:

$$ln(1 - F(\Delta\sigma)) = -\left(\frac{\Delta\sigma}{q}\right)^{h}$$
(8.35)

b) Aplicação do segundo logaritmo neperiano em ambos lados da Eq. (8.35), vem:

$$ln\left(-ln(1-F(\Delta\sigma))\right) = ln\left(\left(\frac{\Delta\sigma}{q}\right)^{h}\right)$$
(8.36)

A Eq. (8.36) obtida no passo "b" pode ser reescrita da seguinte forma:

$$ln\left(-ln(1-F(\Delta\sigma))\right) = h.\,ln(\Delta\sigma) - h.\,ln(q)$$
(8.37)

A transformação logarítmica conduz a uma linha reta com inclinação "A" e logaritmo de intercepção "B" da forma Y=A.X+B, conforme esquematizado na Figura 8.15, sendo:

- $Y = ln \left(-ln(1 F(\Delta \sigma))\right);$
- A=h;
- $X=\ln(\Delta\sigma);$
- $B=h.\ln(q)$.

Adaptando um modelo de regressão linear aos dados transformados, é possível obter os valores das incógnitas "A" e "B". Ou seja, a inclinação da linha de regressão dá uma estimativa do parâmetro de forma "h", enquanto que a intercepção da reta com o

eixo vertical permite a obtenção do parâmetro de escala "q". É importante salientar que esta abordagem pressupõe que os dados seguem a distribuição de Weibull.

Figura 8.15 – Gráfico de regressão linear da distribuição de Weibull

O processo de calibração direta requer a obtenção da distribuição de longo prazo da resposta, levando em conta a contribuição de todos os estados de mar. Isso pode ser conseguido através da soma das distribuições probabilísticas de curto prazo das tensões, ponderando-se pela probabilidade de ocorrência dos estados de mar e pelo número de ciclos no curto prazo de cada um, conforme já apresentado na Eq. (7.34). Se as distribuições de curto prazo forem dadas por Rayleigh em espectros de banda estreita, essa soma é chamada de Soma-Rayleigh (*Rayleigh-Sum*). Neste procedimento, as distribuições são divididas em intervalos iguais, conforme exemplificado na Figura 8.16.

Figura 8.16 – Distribuição probabilística das tensões no curto (esquerda) e longo (direita) prazo.

O gráfico resultante da soma de Rayleigh representa a distribuição probabilística das tensões no longo prazo. Na Figura 8.16 podem-se observar dois gráficos. À esquerda, são as distribuições de tensões de curto prazo para quatro estados de mar diferentes. À direita, é o resultado de longo prazo, obtido pelo somatório das distribuições de tensões de curto prazo.

A curva resultante do somatório das distribuições de tensões de curto prazo fornece informações sobre a probabilidade de ocorrência de diferentes níveis de tensão ao longo do tempo total de utilização da estrutura. Essa é uma das principais informações, pois, a partir dela, são obtidos os parâmetros de Weibull calibrados.

9. ESTUDO DE CASO

9.1. Descrição Geral e Dados Iniciais

Este estudo analisa e avalia o comportamento à fadiga de um módulo de *topside* localizado em uma unidade estacionária de produção do tipo FPSO. Análises de fadiga estocástica e de fadiga pelo método simplificado são realizadas para uma estrutura de módulo, para viabilizar a calibração dos parâmetros de Weibull da distribuição de tensões no longo prazo. Embora os arranjos estruturais da unidade FPSO e do módulo possam ser considerados compatíveis com unidades reais de produção de petróleo, este estudo é conduzido apenas para fins acadêmicos.

A ferramenta computacional utilizada para análise de fadiga estocástica foi o programa SACS (BENTLEY, 2021) que é amplamente utilizado pela indústria *offshore*. Além disso, outros recursos foram utilizados no pós-processamento das informações, tais como o pacote de programação em VBA do *software* Excel e o programa Mathcad 15.

As características físicas da embarcação adotadas neste estudo estão apresentadas na Tabela 9.1 e foram utilizadas como parâmetros de entrada nas análises de fadiga.

Definição	Valor (m)	
Comprimento total do casco entre perpendiculares	345	
Pontal	33	
Boca moldada	58	

Tabela 9.1 - Características principais do FPSO acadêmico

O módulo estrutural selecionado faz parte da planta de processamento do FPSO e está, neste caso, localizado à vante do navio (Figura 9.1). O peso total operacional do módulo, incluindo contingência, é de 3258 toneladas, compreendido pelo peso próprio da estrutura, de equipamentos e das sobrecargas funcionais. A solução em multicolunas tubulares foi adotada para configuração de apoio na transição entre a estrutura do módulo e o casco.

Figura 9.1 – Módulo e FPSO

As juntas das multicolunas tubulares são compostas por chapas *gusset* que conectam o módulo ao convés do navio. Assumiu-se que as chapas *gussets* são efetivas o suficiente para permitir a formação de rótula perfeita, as colunas são muito flexíveis e os contraventamentos longitudinais estão dispostos de forma a não transmitir o efeito dos deslocamentos globais do casco para a estrutura do módulo. Por consequência, nenhum carregamento relativo aos deslocamentos globais de viga navio está aplicado no modelo matemático.

O sequenciamento das análises está descrito da seguinte forma:

I – Análise da fadiga espectral do módulo para diferentes faixas de carregamento dos tanques do FPSO;

II – Obtenção da tensão de referência para a análise da fadiga pelo método simplificado;

III – Calibração reversa a partir dos resultados de I e II e calibração direta a partir do resultado do item I.

As calibrações foram realizadas exclusivamente nas juntas que compõem as colunas tubulares do paliteiro na interface com o convés do FPSO. A escolha destas juntas foi baseada em seu grau de importância, uma vez que são responsáveis pela transferência de todas as cargas do módulo para a fundação (casco) e são usualmente alvo de atenção por parte das sociedades classificadoras de unidades de produção.

A vida útil da unidade é de 30 anos e o fator de fadiga adotado é de 2, totalizando 60 anos.

Tanto para análise simplificada quanto para análise espectral, é necessário que o fator de concentração seja o mesmo, para garantir a calibração correta dos parâmetros de Weibull. Nas ligações tubulares com chapa *gusset*, adotou-se o valor de 2,3 para chapa *gusset* com geometria favorável e curva F3 de duas inclinações, de acordo com as recomendações da DNV-RP-C203 para o ponto crítico da transição entre a chapa e o perfil tubular (Figura 9.2), tratado pela abordagem de *hot spot* para a raiz da solda.

Figura 9.2 – Chapa gusset e ponto crítico de concentração de tensão

Alternativamente, o fator de concentração da chapa *gusset* poderia ser calculado através de modelo em elementos finitos, incluindo outros pontos críticos, seguindo a metodologia apresentada no Capítulo 8 e as recomendações da DNV-RP-C203.

9.2. Modelo Estrutural

Para representar as colunas, vigas, diagonais e chapas de piso, utilizou-se um modelo estrutural composto por elementos de barra e placa. Foi aplicado rótula perfeita nas extremidades dos membros tubulares (*member release*), de acordo com o detalhe construtivo, para as juntas sem travamento no plano de rotação da chapa *gusset*. Esse modelo foi adotado tanto na análise espectral quanto na simplificada, levando em conta as particularidades de cada análise.

A Figura 9.3 ilustra o modelo estrutural utilizado no programa SACS. As multicolunas são compostas por colunas tubulares com diâmetro externo de 35,50 cm e espessura de 2,50 cm.

Figura 9.3 – Modelo do módulo no SACS (Módulo e multicolunas)

Conforme mencionado no subitem anterior, foram avaliadas somente as colunas que fazem parte das multicolunas tubulares de apoio, totalizando 45 colunas e 45 juntas de transição com o convés (Figura 9.4).

Figura 9.4 – Juntas avaliadas destacadas na cor vermelha
As juntas de interface com o casco estão numeradas de J001 até J045. A completa identificação dessas juntas pode ser visualizada na Figura B.1 do Anexo B.

9.3. Análise de Fadiga Estocástica do Módulo

A análise estocástica do módulo foi realizada com auxílio do *software* SACS. Para tanto, conforme já descrito nos capítulos conceituais, esta análise precisa de informações relativas aos estados de mar possíveis de ocorrer, bem como o resultado de estudo do comportamento dinâmico da embarcação (função de transferência). O tratamento destes dados no *software* está descrito nos subitens adiante.

No total, foram realizadas seis análises de fadiga estocástica para o módulo em estudo, de acordo com o número de calados disponíveis, associados às faixas de carregamentos dos tanques.

9.3.1. Função de Transferência do FPSO

As funções de transferência ou os RAOs de movimentos (translações e rotações) utilizadas neste estudo foram geradas através de *software* de hidrodinâmica. Os resultados de RAO em termos de amplitude e fase, para os seis graus de liberdade da plataforma, são apresentados para diversas faixas de períodos de onda regular com amplitude unitária, considerando seis condições de carregamento dos tanques do FPSO em operação. Importante salientar que os dados relativos aos RAOs não foram gerados pelo autor, mas sim obtidos a partir de uma análise preexistente e que foi disponibilizada para a elaboração deste trabalho.

Por convenção, a incidência das ondas no RAO está aplicada na direção positiva dos eixos locais do modelo hidrodinâmico com variação angular de 22,5°, distribuída no sentido anti-horário. A Figura 9.5 apresenta o arranjo geral do FPSO aproado em relação às direções ambientais, às direções de incidência dos RAOS disponibilizados e os casos de fadiga associados ao eixo local do modelo estrutural.

Figura 9.5 – RAOs, eixos locais e direção global das ondas ambientais

Os RAOs fornecidos para a embarcação deste estudo possuem amortecimento de *roll* (viscoso e potencial) compatível com as características dinâmicas da embarcação e com os requisitos de projeto específicos para unidades de exploração.

As funções de transferência, como dito, estão disponíveis para seis condições de carregamento dos tanques do FPSO: mínimo, 20%, 40%, 60%, 80% e máximo.

É natural que cada condição de carregamento apresente probabilidade de ocorrência distinta ao longo da vida útil de produção da unidade. Portanto, assumir que elas têm a mesma chance de acontecer seria impreciso. Por essa razão, adotou-se a hipótese de que a distribuição de carregamentos dos tanques do FPSO segue a distribuição de Weibull, com parâmetros de posição, forma e escala definidos a partir de dados de campo de algumas unidades em operação no Brasil.

Assim, a partir da função de distribuição de Weibull, é possível determinar a frequência relativa de ocorrência dos carregamentos selecionados, como indicado no gráfico da Figura 9.6.

Figura 9.6 – Distribuição de probabilidades dos carregamentos

Com isso, têm-se os seguintes resultados que estão utilizados nas análises espectrais:

- Frequência do carregamento mínimo = 9%;
- Frequência do carregamento máximo = 2%;
- Frequência do carregamento 80% = 5%;
- Frequência do carregamento 60% = 27%;
- Frequência do carregamento 40% = 41%;
- Frequência do carregamento 20% = 16%.

O critério para definição das faixas de influência de cada carregamento foi baseado no resultado das acelerações máximas obtido da análise de movimentos da unidade. Para este módulo, as máximas acelerações de *roll* e *heave* de curto prazo extremo ocorreram nos carregamentos máximo e mínimo, respectivamente, conforme apresentado na Tabela 9.7. Por esta razão, foi aumentado o peso para estas áreas de influência na curva de distribuição de probabilidades.

Cabe, neste ponto, salientar que, para projetos reais, faz-se necessário obter uma curva mais provável de carregamento do FPSO, como essa, de acordo com o histórico de operação de unidades flutuantes semelhantes. Na ausência destes valores, cabe ao operador ou ao proprietário da unidade de produção definir os percentuais de ocorrência dos carregamentos a serem utilizados no projeto.

9.3.2. Estados de Mar

A unidade de produção possui aproamento de 190 graus em relação ao norte, medido no sentido horário. Para a análise, foram consideradas 16 direções de incidência de ondas na embarcação, com base nos dados oceanográficos da região de interesse. Ao todo, foram aplicados 1118 casos de estados de mar, distribuídos por direção, conforme Tabela 9.2.

Case dire	os de fadiga e eção no SACS	Direção ambiental	N° total de estados de mar		
1	0.0°	N	22		
2	22.5°	NNW	15		
3	45.0°	NW	16		
4	67.5°	WNW	21		
5	90.0°	W	31		
6	112.5°	WSW	43		
7	135.0°	SW	136		
8	157.5°	SSW	144		
9	180.0°	S	147		
10	202.5°	SSE	123		
11	225.0°	SE	103		
12	247.5°	ESE	82		
13	270.0°	Е	80		
14	292.5°	ENE	69		
15	315.0°	NE	49		
16	337.5°	NNE	37		
	Σ	1118			

Tabela 9.2 – Distribuição de estados de mar

Cada direção de incidência das ondas do mar tem uma frequência de ocorrência associada (Figura 9.7), a qual é obtida a partir do diagrama de dispersão de ondas da região onde o FPSO está localizado. Além disso, cada bloco que compõe a direção de incidência é subdividido em diversas frequências de ocorrência específicas para cada estado de mar dessa direção. Essas frequências são usadas na análise espectral do módulo e, portanto, são fornecidas como dados de entrada no programa SACS.

Figura 9.7 – Distribuição de ondas por direção

O efeito dos mares bimodais foi considerado, exclusivamente, através da soma das frequências de ocorrência destes mares nos mares unimodais, desprezando a energia correspondente ao segundo pico. Ou seja, o período, a altura de onda e a direcionalidade do segundo pico das ondas não estão incluídos nesta análise.

Para facilitar o entendimento do que foi considerado na análise, tomam-se como exemplo as informações indicadas na Tabela 9.3, onde estão apresentadas as frequências de ocorrências de todos os estados de mar registrados para a direção Norte, tanto para mar unimodal quanto para bimodal.

			MAR UNIMODAL DIREÇÃO NORTE - N							MAR BIMODAL DIREÇÃO NORTE - N							
-	Tp (s)	3	4	5	6	7	8	9	Freq.	3	4	5	6	7	8	9	Freq.
Hs (m		4	5	6	7	8	9	10	Total	4	5	6	7	8	9	10	Total
0.0	0.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.5	1.0	2	0	0	0	3	1	0	6	4	24	0	0	1	1	0	30
1.0	1.5	0	5	1	1	2	1	0	10	0	44	59	1	1	0	1	106
1.5	2.0	0	0	5	0	0	0	0	5	0	0	55	21	4	2	3	85
2.0	2.5	0	0	1	1	0	0	0	2	0	0	1	34	4	2	0	41
2.5	3.0	0	0	0	1	0	0	0	1	0	0	9	8	0	0	0	17
3.0	3.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1
3.5	4.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Tabela 9.3 - Distribuição de ondas - Direção Norte - N

		MAR UNIMODAL DIREÇÃO NORTE - N								M. DIRE	AR BII ÇÃO N	NOE NOR ⁻	DAL TE - I	N		
Tp (s)	3	4	5	6	7	8	9	Freq.	3	4	5	6	7	8	9	Freq.
Hs (m)	4	5	6	7	8	9	10	Total	4	5	6	7	8	9	10	Total
							24								280	

A contribuição energética do mar bimodal foi incorporada somando-se os estados de mar por faixa de altura significativa (Hs) e período de pico (Tp). Por exemplo, considerando o estado de mar com Hs de 1,5 m e Tp de 6 segundos, a frequência de ocorrência é a seguinte:

$$Freq(Hs_i; Tp_j) = \frac{FreqHs_iTp_jUni + FreqHs_iTp_jBi}{FreqTotalUni + FreqTotalBi}$$
$$Freq(1,5; 6) = \frac{1+59}{24+280} = 0,9737$$

O procedimento descrito acima foi aplicado para os demais estados de mar e direções. Na Tabela 9.4, estão apresentados os valores finais para a direção norte, considerando todos os correspondentes estados de mar. Ressalta-se aqui que, na definição dos estados de mar, adotou-se como referência o limite superior das faixas de Hs, com a finalidade de aumentar a anergia do espectro, tendo em vista a ausência do segundo pico do mar bimodal. Em outras palavras, tentou-se compensar a perda de energia gerada pelo segundo pico nas análises.

Hs (m)		DIREÇÃO NORTE - N											
				Tp (s)									
	4	4 5 6 7 8 9 10											
0.5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0					
1	0.0197	0.0789	0.0000	0.0000	0.0132	0.0066	0.0000	4					
1.5	0.0000	0.1612	0.1974	0.0066	0.0099	0.0033	0.0033	6					
2	0.0000	0.0000	0.1974	0.0691	0.0132	0.0066	0.0099	5					
2.5	0.0000	0.0000	0.0066	0.1151	0.0132	0.0066	0.0000	4					
3	0.0000	0.0000	0.0296	0.0296	0.0000	0.0000	0.0000	2					
3.5	0.0000	0.0000	0.0000	0.0000	0.0033	0.0000	0.0000	1					
4	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0					
							Σ	22					

Tabela 9.4 - Percentual de ocorrência por estado de mar

A distribuição de frequências de ocorrência no modelo foi definida a partir do aproamento da unidade de produção, com referência aos eixos locais. Os setores circulares que delimitam cada direção de incidência de onda possuem ângulo de abertura de 22,5°, sendo 11,25° no sentido horário e 11,25° no sentido anti-horário, a partir da origem do ponto cardeal, colateral ou subcolateral, conforme Figura 9.8, exemplificada para o setor norte.

Neste estudo de caso, devido ao aproamento de 190°, as ondas que vêm do setor norte atingem a popa da embarcação, de modo que tais ondas, bem como seu percentual de ocorrência estão aplicados no sentido do eixo local "x" positivo (RAO de 0°) do FPSO, conforme ilustrado na Figura 9.5. O mesmo raciocínio é aplicado para as outras direções, no sentido anti-horário.

Figura 9.8 – Setores de incidência de ondas por direção

O espectro de mar utilizado segue a formulação de JONSWAP modificado, de acordo com o descrito no item 6.4.3.

9.3.3. Cruzamento Espectral e Resultado do Dano

O SACS realiza automaticamente o cruzamento espectral de todos os estados de mar com os RAOs de tensão gerados pelo programa a partir dos RAOs de movimentos. Como resultado, é obtido o espectro de resposta de tensão para todos os pontos de referência da seção transversal das juntas analisadas. Os pontos de referência são os indicados na Figura 9.9, aplicados às seções tubulares.

Figura 9.9 – Pontos de referência (Manual do SACS)

Na Figura 9.10, Figura 9.11 e Figura 9.12 estão apresentados os gráficos gerados pelo programa SACS para a junta J006 referentes a um espectro de mar (definido na Figura 9.10), e seus correspondentes RAO de tensões e espectro de resposta de tensão.

Figura 9.10 – Espectro de mar (Hs=2 m, Tp = 7 s, direção Leste "E")

Figura 9.11 – RAO de tensões da direção Leste "E" (ponto "L" da seção transversal)

Figura 9.12 – Espectro de resposta de tensão (ponto "L" da seção transversal)

Ao tomar, por exemplo, o valor da ordenada correspondente ao valor de 7 segundos do eixo das abscissas, pode-se fazer uma verificação e aplicação do conceito de cruzamento espectral já apresentado no Capítulo 7, utilizando a Eq. (7.27). Desta forma, obtém-se a resposta discreta para um ponto do espectro:

$$S_R = 15,82^2 \times 4,58 \cong 1146$$

A partir dos espectros de resposta de tensão, calcula-se o número de ciclos correspondente a cada nível de flutuação de tensão segundo a distribuição de Rayleigh e com o número total de ciclos de curto prazo obtido a partir do período de cruzamento zero-ascendente da resposta. Em seguida, é determinada a contribuição de cada nível de tensão para o dano total da junta e então somadas para obter o dano de curto prazo acumulado, utilizando a regra de Miner. Estas etapas são executadas internamente pelo programa SACS.

Com os danos de curto prazo, calcula-se o dano total de longo prazo considerando todos os estados de mar e todas as direções. Os valores de dano para todas as juntas selecionadas estão apresentados na Tabela 9.5. Além dos danos individualizados para cada faixa de carregamento, a mesma tabela apresenta o valor do dano final a ser utilizado na calibração. Esse valor é calculado considerando a contribuição ponderada de cada carregamento, com percentuais de ocorrência definidos de acordo com o indicado no item 9.3.1.

MEMBRO	NÓ	PROBABI	LIDADE DE O	CORRÊNCIA	E CARREGAN	IENTOS DOS	TANQUES	DANO FINAL PONDERADO
		2%	9%	5%	27%	41%	16%	
		MAX.	MIN.	80%	60%	40%	20%	
J001-J047	J001	0.004698	0.004266	0.002994	0.002720	0.003339	0.004377	0.003431
J002-J048	J002	0.642970	0.925793	0.573722	0.618356	0.725751	0.862886	0.727443
J003-J074	J003	0.017569	0.015480	0.016305	0.015665	0.015524	0.017359	0.015932
J004-J050	J004	0.039504	0.056802	0.027215	0.027638	0.036674	0.049511	0.037683
J005-J090	J005	0.033527	0.026373	0.035125	0.034166	0.029182	0.028977	0.030626
J006-J051	J006	0.752295	1.036354	0.606795	0.640886	0.792836	0.976893	0.793062
J007-J068	J007	0.027230	0.024298	0.028571	0.028631	0.025551	0.025625	0.026466
J008-J052	J008	0.040437	0.061661	0.033632	0.035900	0.043903	0.054767	0.044496
J009-J083	J009	0.033034	0.030654	0.019926	0.018708	0.023750	0.030908	0.024150
J010-J084	J010	0.106359	0.130663	0.077034	0.078574	0.100762	0.126505	0.100507
J011-J053	J011	0.001537	0.001668	0.001038	0.001094	0.001302	0.001643	0.001325
J012-J085	J012	0.072808	0.076778	0.048198	0.047235	0.059923	0.076370	0.060317
J013-J077	J013	0.134161	0.160598	0.096662	0.098302	0.124821	0.156598	0.124744
J014-J075	J014	0.019502	0.018023	0.020808	0.020951	0.018789	0.019005	0.019454
J015-J055	J015	0.013250	0.025498	0.011410	0.012578	0.015992	0.020923	0.016431
J016-J072	J016	0.009387	0.007332	0.009928	0.009658	0.008170	0.008092	0.008596
J017-J056	J017	0.001355	0.001505	0.000758	0.000744	0.000976	0.001367	0.001020
J018-J086	J018	0.024278	0.021435	0.014144	0.013232	0.016719	0.021668	0.017016
J019-J082	J019	0.000967	0.001157	0.000609	0.000646	0.000800	0.001067	0.000827
J020-J076	J020	0.011827	0.009385	0.012524	0.012240	0.010425	0.010323	0.010938
J021-J057	J021	0.008091	0.012262	0.007050	0.007404	0.008660	0.010785	0.008893
J022-J080	J022	0.019091	0.017271	0.020377	0.020413	0.018191	0.018407	0.018870
J023-J059	J023	0.001121	0.001068	0.000600	0.000575	0.000751	0.001027	0.000776
J024-J060	J024	0.001262	0.001650	0.000779	0.000827	0.001048	0.001452	0.001098
J025-J061	J025	0.002169	0.002353	0.001181	0.001174	0.001511	0.002123	0.001590
J026-J062	J026	0.004186	0.006290	0.003384	0.003583	0.004456	0.005794	0.004541
J027-J054	J027	0.085463	0.090907	0.057081	0.056034	0.070929	0.090266	0.071397
J028-J063	J028	0.005770	0.005563	0.003303	0.003018	0.003785	0.005091	0.003962
J029-J089	J029	0.042941	0.041207	0.026213	0.025151	0.031674	0.041116	0.032234

Tabela 9.5 - Resultados de dano por análise espectral no SACS

MEMBRO	NÓ	PROBAB	PROBABILIDADE DE OCORRÊNCIA E CARREGAMENTOS DOS TANQUES								
		2%	9%	5%	27%	41%	16%				
		MAX.	MIN.	80%	60%	40%	20%				
J030-J064	J030	0.029262	0.065814	0.028415	0.032466	0.040616	0.052699	0.041779			
J031-J058	J031	0.130903	0.143456	0.090761	0.089078	0.111872	0.141533	0.112631			
J032-J065	J032	0.003977	0.004057	0.002378	0.002325	0.003033	0.003936	0.003065			
J033-J088	J033	0.046820	0.048130	0.029666	0.029028	0.036730	0.047564	0.037258			
J034-J046	J034	0.013628	0.011925	0.014527	0.014460	0.012765	0.012861	0.013268			
J035-J079	J035	0.008411	0.006233	0.008864	0.008547	0.007117	0.006983	0.007516			
J036-J066	J036	0.065575	0.099569	0.056413	0.059688	0.071152	0.090211	0.072815			
J037-J087	J037	0.111701	0.126989	0.078822	0.078388	0.099039	0.124798	0.099342			
J038-J067	J038	0.004098	0.003156	0.002674	0.002418	0.002819	0.003552	0.002877			
J039-J049	J039	0.665222	0.840289	0.572122	0.581201	0.663135	0.807500	0.675546			
J040-J078	J040	0.030490	0.026749	0.030644	0.030807	0.028589	0.029146	0.029252			
J041-J073	J041	0.069129	0.091478	0.058026	0.059533	0.069017	0.086418	0.070715			
J042-J081	J042	0.029247	0.028558	0.031098	0.031405	0.028999	0.030181	0.029908			
J043-J069	J043	0.004002	0.005602	0.002862	0.003200	0.003990	0.005239	0.004065			
J044-J070	J044	0.595336	0.713163	0.439368	0.437867	0.535833	0.681513	0.545017			
J045-J071	J045	0.043728	0.036073	0.045972	0.045020	0.039076	0.039422	0.040904			

Os maiores valores de dano e o quantitativo de juntas críticas por condição de carregamento dos tanques encontram-se indicados na tabela resumo abaixo:

DESCRIÇÃO	FAIXA DE CARREGAMENTOS							
	MAX.	80%	60%	40%	20%	MIN.		
Contagem de juntas com maior dano	8	6	5	0	0	26		
Valor do maior dano	0.752	0.607	0.641	0.793	0.977	1.036		

Tabela 9.6 - Resumo de danos e quantitativo de juntas críticas

Verifica-se que um maior número de juntas exibe danos significativos quando submetidas à condição de carregamento mínimo. Isto é, das 45 juntas que foram analisadas, 26 demonstraram ter os piores resultados de dano sob essa carga específica. De maneira similar, a junta que apresentou o maior nível de dano também foi identificada nessas mesmas circunstâncias de carga mínima. Portanto, é possível afirmar que a condição de carregamento mínimo é a mais crítica para as juntas tubulares em estudo, conforme indicado pela análise espectral.

O gráfico indicado na Figura 9.13 reflete os valores indicados na Tabela 9.6. No eixo vertical à esquerda, estão os valores de dano, no eixo vertical à direita, o número de juntas com maiores danos e no eixo horizontal as condições de carregamentos avaliados.

RESUMO DE DANO POR CARREGAMENTO DOS TANQUES

Figura 9.13 - Resumo de dano por carregamento e número de juntas

9.4. Análise de Fadiga Simplificada do Módulo

9.4.1. Casos de Carga e Forças Inerciais

Conforme referido no item 9.2, o modelo estrutural utilizado na análise simplificada é idêntico ao da análise espectral. Porém, as tensões de referência são calculadas a partir dos resultados de combinações de carregamentos inerciais que representam o efeito do movimento dinâmico da embarcação na estrutura do módulo. Apenas a parcela dinâmica dos carregamentos é considerada, visto que é responsável pela geração da flutuação de tensões nas juntas estruturais do módulo, desconsiderando o efeito estático.

Nesta análise, foram considerados 12 casos de combinação de cargas (F000, F001, F045, F090, F091, F135, F180, F181, F225, F271, F270 e F315) conforme ilustrado na Figura 9.14 .

Figura 9.14 - Combinações de cargas inerciais de fadiga

Cada caso de carga representa a massa total do módulo acelerada nas direções dos eixos locais de referência. Três forças inerciais translacionais são aplicadas em cada caso de carregamento (x,y,z), de acordo com os valores máximos de aceleração e seus concomitantes, obtidos de uma análise de movimentos previamente disponibilizada. Para a análise de fadiga, o efeito gravitacional da aceleração na direção "z" foi desconsiderado. A Tabela 9.7 indica as acelerações utilizadas, bem como a origem do carregamento representativo.

Carregamento do FPSO	Ax (m/s ²)	Ay (m/s ²)	Az(m/s ²)
80%	1.044	0.849	2.005
Max.	0.058	2.092	1.063
Min.	0.761	1.106	2.273

Tabela 9.7 – Acelerações translacionais

Pode-se notar que a análise estrutural quase-estática, na fadiga simplificada, foi realizada considerando as acelerações da embarcação para condições de carregamentos distintos, sendo uma premissa adotada para este projeto.

Foi adotada ainda a premissa de aceleração igual a 70% das máximas horizontais em "x" e em "y" para as direções de mar oblíquo. Além disso, em todos os casos de carga, foi fixada a aceleração vertical máxima no valor de 2,273 m/s².

Cabe aqui enfatizar que a utilização do valor de 70% das máximas acelerações horizontais é uma aproximação adotada neste trabalho que pode não ser conservadora em termos de resultado de vida à fadiga. Neste contexto, o correto seria usar envoltórias das acelerações nas direções de mar oblíquo a partir da análise de movimentos da embarcação.

9.4.2. Parâmetros de Fadiga

O número de ciclos utilizado na fadiga simplificada é calculado a partir da frequência média de cruzamento zero-ascendente, dado pela Eq. (8.27), conforme apresentado no item 8.8. Considerando o comprimento da embarcação fictícia, tem-se o seguinte valor para o período médio de cruzamento zero-ascendente:

$$Tm = \frac{1}{\nu_0} = 4 \log_{10}(345) \cong 10s$$

Sendo a vida útil da unidade de 30 anos com fator de fadiga de 2, pode-se calcular o número de ciclos total no longo prazo:

$$n = \frac{60anos \times 365dias \times 24horas \times 60min \times 60s}{10s} = 1,89 \times 10^8$$

O parâmetro de forma de Weibull sugerido pela classificadora DNV, conforme já exposto no item 8.8, para este estudo fica:

$$h = 2,21 - 0,54 \log_{10}(345) = 0,84$$

9.4.3. Resultado de Dano

Foi desenvolvida uma planilha no Excel, utilizando o VBA (*Visual Basic for Applications*), para realizar o cálculo de danos por meio da metodologia de análise de fadiga simplificada, tendo como insumo a listagem de esforços nas barras gerada no programa SACS. A planilha considera as formulações descritas no item 8.8 e assume a utilização da curva de fadiga "D" da Figura 8.5.

As 12 combinações de carregamento produzem tensões que irão servir para montar a distribuição de longo prazo. Para cada caso de carga é calculado o dano correspondente, e o valor máximo de cada combinação é utilizado como representativo da junta analisada. A Tabela A.1 do Anexo 1 exibe os valores de dano obtidos pela metodologia simplificada para todas as juntas analisadas. Por uma questão de organização da dissertação, somente o resultado para a primeira junta (J001) encontra-se ilustrado na Tabela 9.8.

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO EM 60 ANOS	VIDA CALCULADA
J001-J047	J001	F135	3.09	0.2638	227.411
J001-J047	J001	F091	2.90	0.2022	296.736
J001-J047	J001	F180	2.84	0.1875	320.068
J001-J047	J001	F090	2.76	0.1661	361.228
J001-J047	J001	F181	2.26	0.0701	856.164
J001-J047	J001	F225	1.86	0.0289	2079.002
J001-J047	J001	F045	1.42	0.0078	7672.634
J001-J047	J001	F315	1.38	0.0069	8645.533
J001-J047	J001	F270	1.19	0.0033	18292.683
J001-J047	J001	F001	1.14	0.0026	22900.763
J001-J047	J001	F271	1.06	0.0018	32967.033
J001-J047	J001	F000	0.48	0.0000	2000000

Tabela 9.8 - Resultado de dano para a junta J001

Com base nos valores obtidos para o dano pelo método simplificado e pelo método espectral, foi criado um gráfico comparativo, conforme ilustrado na Figura 9.15. Neste gráfico, o eixo vertical localizado à direita apresenta os valores de dano da fadiga espectral, enquanto o eixo vertical à esquerda apresenta os valores de dano da fadiga simplificada, ambos em escalas distintas. O eixo horizontal lista as 45 juntas avaliadas.

Figura 9.15 - Comparativo de danos por junta

O gráfico apresentado na figura acima auxilia a visualização da consistência nos resultados de modo qualitativo, uma vez que é possível observar um padrão de comportamento nos resultados de dano para todas as juntas. Isso porque conforme o dano aumenta para uma determinada junta utilizando a metodologia espectral, ocorre o mesmo aumento na metodologia simplificada, independentemente do valor e da proporcionalidade.

Percebe-se também que em nenhum caso o valor do dano obtido na fadiga espectral é maior que o dano da fadiga simplificada, corroborando ainda mais para a coerência dos resultados. Ressalta-se aqui, ainda, o conservadorismo implícito no método simplificado, pois a diferença entre os valores de dano do método simplificado com parâmetro de regra comparado ao espectral é muito significativa, chegando a uma ordem de grandeza.

9.5. Resultados da Calibração Reversa

A calibração reversa está realizada de acordo com as informações descritas no subitem 8.10.1 e com base nos resultados apresentados nos subitens 9.3 e 9.4. Para executar esse processo, foi desenvolvido um fluxograma de programação no Excel utilizando VBA. A Figura 8.14 ilustra o fluxograma mencionado, proporcionando uma representação visual do procedimento.

O número de ciclos utilizado na calibração foi o mesmo da regra, pois é usualmente utilizado nos projetos de engenharia.

O valor final da calibração reversa com o novo parâmetro de forma de Weibull encontra-se listado na Tabela 9.9 de forma individualizada para cada junta. Além disso, a mesma tabela apresenta os danos obtidos por cada metodologia com objetivo de permitir a comparação, sendo que a coluna de fadiga simplificada se refere ao cálculo com parâmetros de regra.

MEMBRO	NO	DANO SIMPLIFICADA	DANO DA ESPECTRAL	NÚMERO DE CICLOS	WEIBULL CALIBRADO
J001-J047	J001	0.2638	0.003431287	1.8921600E+08	0.443
J002-J048	J002	4.6992	0.727442752	1.8921600E+08	0.624
J003-J074	J003	0.4155	0.015931657	1.8921600E+08	0.518
J004-J050	J004	1.1708	0.037683143	1.8921600E+08	0.502
J005-J090	J005	0.7321	0.030626178	1.8921600E+08	0.523

Tabela 9.9 – Resultado da calibração reversa (ponderação de carregamentos)

MEMBRO	NO	DANO SIMPLIFICADA	DANO DA ESPECTRAL	NÚMERO DE CICLOS	WEIBULL CALIBRADO
J006-J051	J006	8.3648	0.79306218	1.8921600E+08	0.578
J007-J068	J007	0.1629	0.026466344	1.8921600E+08	0.640
J008-J052	300L	0.5543	0.044495598	1.8921600E+08	0.575
J009-J083	J009	0.4828	0.02414966	1.8921600E+08	0.538
J010-J084	J010	1.3328	0.100506725	1.8921600E+08	0.567
J011-J053	J011	0.1183	0.001324552	1.8921600E+08	0.432
J012-J085	J012	0.9047	0.060317238	1.8921600E+08	0.558
J013-J077	J013	1.6984	0.124743985	1.8921600E+08	0.564
J014-J075	J014	0.0933	0.019453575	1.8921600E+08	0.665
J015-J055	J015	0.2242	0.016430852	1.8921600E+08	0.570
J016-J072	J016	0.0626	0.008596104	1.8921600E+08	0.625
J017-J056	J017	0.0648	0.001020019	1.8921600E+08	0.455
J018-J086	J018	0.4438	0.017016098	1.8921600E+08	0.518
J019-J082	J019	0.0765	0.000827186	1.8921600E+08	0.429
J020-J076	J020	0.0651	0.010937903	1.8921600E+08	0.644
J021-J057	J021	0.1561	0.008892859	1.8921600E+08	0.549
J022-J080	J022	0.0765	0.0188698	1.8921600E+08	0.681
J023-J059	J023	0.0371	0.000776201	1.8921600E+08	0.480
J024-J060	J024	0.0996	0.001097799	1.8921600E+08	0.432
J025-J061	J025	0.1239	0.001590177	1.8921600E+08	0.445
J026-J062	J026	0.1191	0.00454061	1.8921600E+08	0.520
J027-J054	J027	1.0666	0.071397442	1.8921600E+08	0.558
J028-J063	J028	0.3214	0.003962481	1.8921600E+08	0.438
J029-J089	J029	0.7655	0.032233602	1.8921600E+08	0.523
J030-J064	J030	0.4187	0.041779398	1.8921600E+08	0.595
J031-J058	J031	1.7509	0.112630739	1.8921600E+08	0.553
J032-J065	J032	0.0998	0.00306461	1.8921600E+08	0.504
J033-J088	J033	0.8603	0.037258346	1.8921600E+08	0.525
J034-J046	J034	0.0523	0.013267719	1.8921600E+08	0.684
J035-J079	J035	0.0984	0.007515517	1.8921600E+08	0.575
J036-J066	J036	1.3121	0.072815355	1.8921600E+08	0.542
J037-J087	J037	1.4199	0.099342441	1.8921600E+08	0.560
J038-J067	J038	0.0720	0.002876691	1.8921600E+08	0.525
J039-J049	J039	6.4173	0.675546001	1.8921600E+08	0.588
J040-J078	J040	0.4364	0.029252156 1.8921600E+		0.561
J041-J073	J041	1.3684	0.070714658 1.8921600E+08		0.536
J042-J081	J042	0.1591	0.029907682 1.8921600E+08		0.654
J043-J069	J043	0.2857	0.004065421	0.004065421 1.8921600E+08 0	
J044-J070	J044	10.1593	0.545017386	0.545017386 1.8921600E+08	
J045-J071	J045	0.7924	0.04090358	0.04090358 1.8921600E+08	

O valor máximo do parâmetro de forma de Weibull foi observado na junta J034, sendo igual a 0,684.

9.6. Resultados da Calibração Direta

A aplicação da técnica de calibração direta está baseada nos valores das médias quadráticas das tensões geradas no programa SACS para as juntas das multicolunas de suporte do módulo, a partir do resultado da análise de fadiga espectral.

Além das informações relativas à média quadrática das tensões, o programa ainda fornece o número de ciclos e o dano para todos os estados de mar e para todas as direções de incidência.

9.6.1. Junta J006

Para consolidar a metodologia de calibração direta, foi selecionada a junta J006, pertencente ao membro J006-J051. As informações para esta junta, referentes à resposta de tensão em termos de RMS, aos estados de mar e os números de ciclos, estão listadas na Tabela A.2 do Anexo A. Os resultados apresentados nessa tabela foram extraídos da análise espectral do módulo na condição de carregamento mínimo.

Na aplicação do método de calibração direta, a função de excedência das tensões foi dividida em 20 intervalos, distribuídos ao longo de zero a duas vezes a tensão máxima média quadrática (2. RMS_{MAX}) dentre todos os estados de mar. O processo consiste em fazer a soma das distribuições de excedência de Rayleigh para cada estado mar, ponderada pelo número de ciclos, obtendo uma função de excedência no longo prazo. A Figura 9.16 ilustra o conceito aplicado, tendo como base os resultados do programa SACS.

Figura 9.16 – Curva de excedência (Q) no longo prazo (Rayleigh-Sum)

Na figura acima, " n_i " representa o número total de ciclos de cada par " H_s " e " T_p ", " n_T " o número total de ciclos, "*NEM*" o número total de estados de mar, "*NP*" o número de pontos e " Δ_{RMS} " a largura da faixa de tensões *RMS*.

Conforme apresentado em 8.10.2, a linearização da função de excedência foi realizada a partir da aplicação do logaritmo neperiano. Com a função linearizada, aplicouse o método dos mínimos quadrados (MMQ), com objetivo de se obter um polinômio do primeiro grau que mais se aproximasse da função linearizada, gerando o resultado conforme mostrado na Figura 9.17.

Como mencionado no item 8.10.2, o polinômio de primeiro grau (Y=Ax+B) gerado pelo MMQ fornece os parâmetros da distribuição de Weibull. Neste caso, para a junta J006, os valores obtidos para os parâmetros de forma e escala foram 0,861 e 9,45733, respectivamente.

Figura 9.17 – Regressão linear (junta J006)

A partir dos resultados obtidos, foram criadas duas curvas de excedência: uma com a função de probabilidade de excedência de longo prazo, obtida através do procedimento de soma de Rayleigh; e outra pelos parâmetros de Weibull obtidos na calibração direta por regressão linear. A Figura 9.18 mostra que, para a junta avaliada, as curvas ficaram praticamente sobrepostas, indicando um ajuste satisfatório e coerência no emprego da metodologia.

Figura 9.18 – Curva de Excedência para a junta J006

Por definição, a curva de excedência indica a chance de uma determinada grandeza ser excedida. A partir deste gráfico pode-se notar que as maiores tensões têm menor probabilidade de ocorrência.

Visando a comparação dos resultados, foram obtidos os valores de calibração reversa para esta mesma junta, tendo como insumo o dano obtido na fadiga espectral na condição de carregamento mínimo. Este carregamento foi escolhido para manter a mesma base de comparação, uma vez que a calibração direta foi feita na condição de carregamento mínimo. Assim sendo, na calibração reversa, obteve-se o parâmetro de forma de Weibull calibrado de 0,601, associado a uma tensão dupla de *hot spot* centenária de 607 MPa, conforme listado na Tabela A.3. Vale lembrar que a Tabela A.3 apresenta o valor da tensão em amplitude simples e sem o fator de concentração de tensão. Desse modo, para chegar ao valor de 607 MPa, é necessário multiplicar a tensão 8,2 kN/cm² por 2 e por 3,7.

O número de ciclos total da junta ao longo dos 60 anos, considerando o efeito de todos os estados de mar para o carregamento mínimo, é de 2,24007E+08, obtido diretamente do programa SACS na análise espectral.

O número de ciclos correspondente ao período de 100 anos fica igual a:

$$n_{100} = 2,24007 \times 10^8 \times \frac{100}{60} = 3,733 \times 10^8$$

Com isso, é possível estimar a tensão centenária equivalente de longo prazo, utilizando a Eq. (8.19), sendo igual a:

$$S_{100_{J006}} = q.\ln(n_{100})^{\frac{1}{h}} = 9,45733 \times \ln(3,733 \times 10^8)^{1/0,861} = 302,12MPa$$

De posse dos parâmetros de Weibull extraídos da calibração direta e do número de ciclos total em 60 anos, é possível avaliar o dano da junta J006 com a formula fechada dada pela Eq. (8.23), conforme já apresentada no item 8.8. Assim, tem-se que:

$$D_{J006} = \frac{n_{60}q_{J006}^{m_1}}{\bar{a}_1} \Gamma\left(1 + \frac{m_1}{h_{J006}}; \left(\frac{S_1}{q_{J006}}\right)^{h_{J006}}\right) + \frac{n_{60}q_{J006}^{m_2}}{\bar{a}_2} \gamma\left(1 + \frac{m_2}{h_{J006}}; \left(\frac{S_1}{q_{J006}}\right)^{h_{J006}}\right) = 1,04$$

Onde:

 $n_{60} = n^{\circ} \text{ de ciclos nos } 60 \text{ anos} = 2,24007\text{E}+08;$

 $\bar{a}_1 = parâmetro da curva "D" no ar = 10^{12,164};$

 $m_1 =$ parâmetro da curva "D" no ar = 3;

 $\bar{a}_2 = parâmetro da curva "D" no ar = 10^{15,608};$

 $m_2 = \text{parâmetro da curva "D" no ar} = 5;$

 S_1 = tensão de mudança de inclinação da curva "D" = 52,63;

 h_{1006} = parâmetro de forma da calibração direta = 0,861;

 q_{J006} = parâmetro de escala da calibração direta = 9,45733;

Conforme pode ser observado, o dano calculado com os parâmetros extraídos da calibração direta (1,04) é muito semelhante ao dano obtido da fadiga espectral no SACS (1,036) apresentada na Tabela 9.5 para a junta J006 na condição de carregamento mínimo.

9.6.2. Todas as Juntas

O mesmo procedimento de calibração foi realizado para as demais juntas localizadas na interface do módulo com o convés da unidade flutuante, mantendo as

mesmas premissas descritas à junta J006. Os resultados obtidos encontram-se listados na Tabela 9.10.

JUNTA	CALIBR REVE	AÇÃO RSA		CALIBRA	ÇÃO DIRETA	١	FADIGA E (SA	SPECTRAL .CS)	ERRO NO DANO
	Scp	hrev	hdir	qlp	Slp	Ddir	Desp	Nc	DDIR - DESP / DESP
J001	228.78	0.457	0.860	2.753	88.339	0.0045	0.00426570	2.2640E+08	4.79%
J002	507.84	0.647	0.931	10.740	264.03	1.0070	0.92579280	2.2081E+08	8.77%
J003	256.48	0.515	0.908	3.952	105.415	0.0152	0.01547980	2.2362E+08	1.99%
J004	338.29	0.532	0.812	4.127	162.699	0.0563	0.05680150	2.2594E+08	0.90%
J005	297.56	0.511	0.944	4.862	114.275	0.0282	0.02637260	2.1620E+08	6.85%
J006	607.10	0.601	0.861	9.457	302.12	1.0400	1.03635400	2.2401E+08	0.35%
J007	203.52	0.633	0.955	4.878	110.575	0.0258	0.02429800	2.1520E+08	6.21%
800L	276.39	0.603	0.905	5.323	143.562	0.0640	0.06166080	2.2042E+08	3.80%
1009	266.61	0.556	0.796	3.437	145.855	0.0301	0.03065350	2.2790E+08	1.92%
J010	350.78	0.589	0.806	4.889	197.968	0.1279	0.13066300	2.2834E+08	2.12%
J011	188.76	0.444	0.828	2.038	74.745	0.0015	0.00166750	2.2404E+08	9.99%
J012	315.10	0.578	0.789	4.119	180.822	0.0752	0.07677790	2.3017E+08	2.00%
J013	375.75	0.585	0.808	5.154	206.855	0.1560	0.16059750	2.2752E+08	2.84%
J014	178.67	0.657	0.942	4.458	105.483	0.0187	0.01802320	2.1450E+08	3.88%
J015	219.81	0.607	0.884	4.198	122.392	0.0258	0.02549780	2.1898E+08	1.00%
J016	163.27	0.612	0.927	3.574	89.05	0.0074	0.00733230	2.1636E+08	0.51%
J017	164.54	0.479	0.752	1.610	84.963	0.0015	0.00150530	2.2345E+08	1.42%
J018	260.86	0.535	0.785	3.088	138.176	0.0214	0.02143500	2.2956E+08	0.26%
J019	170.80	0.454	0.760	1.549	78.408	0.0011	0.00115720	2.2371E+08	7.54%
J020	164.70	0.629	0.942	3.888	92.028	0.0096	0.00938490	2.1589E+08	2.43%
J021	201.46	0.576	0.899	3.715	102.409	0.0122	0.01226200	2.1994E+08	0.83%
J022	170.81	0.673	0.941	4.411	104.727	0.0180	0.01727140	2.1469E+08	4.01%
J023	145.48	0.49	0.769	1.590	76.932	0.0011	0.00106770	2.2647E+08	0.44%
J024	181.40	0.457	0.714	1.425	92.882	0.0016	0.00165040	2.2376E+08	1.72%
J025	190.80	0.467	0.713	1.536	100.771	0.0024	0.00235300	2.2583E+08	2.51%
J026	189.06	0.545	0.816	2.597	100.238	0.0057	0.00629010	2.1730E+08	9.29%
J027	329.66	0.578	0.786	4.248	189.201	0.0894	0.09090650	2.3026E+08	1.67%
J028	240.31	0.461	0.806	2.480	100.443	0.0055	0.00556320	2.2724E+08	1.62%
J029	301.14	0.542	0.768	3.370	164.027	0.0405	0.04120690	2.2949E+08	1.60%
J030	256.98	0.635	0.888	5.253	150.749	0.0699	0.06581370	2.1664E+08	6.17%
J031	379.04	0.573	0.799	4.914	205.563	0.1408	0.14345560	2.2691E+08	1.87%
J032	181.46	0.523	0.812	2.367	93.275	0.0040	0.00405650	2.2704E+08	1.57%
J033	310.80	0.544	0.767	3.484	170.45	0.0478	0.04813010	2.2976E+08	0.71%
J034	156.88	0.674	0.952	4.167	95.389	0.0123	0.01192490	2.1512E+08	2.78%
J035	180.87	0.559	0.958	3.691	82.885	0.0064	0.00623260	2.1675E+08	2.62%
J036	349.24	0.567	0.824	4.914	182.972	0.1010	0.09956850	2.1561E+08	1.42%
J037	357.09	0.581	0.800	4.790	199.469	0.1251	0.12698920	2.2738E+08	1.47%
J038	168.49	0.53	0.888	2.716	78.081	0.0030	0.00315590	2.2346E+08	6.14%

Tabela 9.10 – Comparativo das calibrações direta e reversa

JUNTA	CALIBRAÇÃO REVERSA		CALIBRAÇÃO DIRETA			FADIGA ESPECTRAL (SACS)		ERRO NO DANO	
	SCP	h _{REV}	h _{DIR}	qlp	Slp	D _{DIR}	DESP	Nc	D _{DIR} - D _{ESP} / D _{ESP}
J039	558.93	0.607	0.851	9.160	303.825	0.9702	0.84028930	2.1820E+08	15.46%
J040	259.74	0.554	1.025	5.575	102.227	0.0281	0.02674920	2.1997E+08	5.13%
J041	353.39	0.557	0.844	5.066	173.172	0.0932	0.09147800	2.1636E+08	1.89%
J042	202.38	0.649	0.943	4.937	116.415	0.0304	0.02855820	2.1413E+08	6.42%
J043	233.35	0.469	0.784	2.296	103.094	0.0051	0.00560220	2.2471E+08	8.59%
J044	645.43	0.552	0.781	7.161	326.881	0.7438	0.71316250	2.2300E+08	4.30%
J045	303.96	0.529	0.966	5.430	118.847	0.0396	0.03607270	2.1718E+08	9.89%

A Tabela 9.10 apresenta as seguintes informações:

- Tensão de amplitude dupla de *hot spot* (MPa) no curto prazo (S_{CP}), obtida a partir da análise quase-estática no SACS;
- Parâmetro de forma de Weibull (h_{REV}) obtido no procedimento de calibração reversa para a condição de carregamento mínimo;
- Parâmetro de forma (h_{DIR}) e de escala (q_{LP}) de Weibull obtidos no processo de regressão linear da calibração direta;
- Tensão de amplitude dupla de *hot spot* (MPa) no longo prazo (S_{LP}), calculado com os parâmetros da calibração direta;
- Resultados de dano com o emprego da formulação fechada, calculados com os parâmetros da calibração direta (D_{DIR});
- Resultados de dano (D_{ESP}) e de número de ciclos (N_C) da análise espectral no SACS em 60 anos, considerando as informações da condição de carregamento mínimo;
- Erro entre o dano pela calibração direta e o dano da análise espectral, listado na última coluna da tabela.

Na tabela acima, foram acrescentadas informações relativas à calibração reversa para a condição de carregamento mínimo, visando facilitar a visualização e a comparação dos resultados.

Pode-se notar que as diferenças entre os danos obtidos pela Soma-Rayleigh com parâmetros calibrados e pela análise espectral nem sempre se mostram de maneira comportada, apresentando diferenças em torno de até 15%, como é o caso particular da junta J039. Essa diferença pode ser justificada possivelmente pela distribuição e pelo critério de seleção de pontos utilizados na regressão linear.

Identificou-se que a reta que representa o polinômio do primeiro grau não ficou tão ajustada quando comparada a da junta J006, apresentando erros de aproximação mais significativos. Além disso, a maior concentração de pontos no trecho final da reta contribuiu de forma mais expressiva na definição do coeficiente angular da reta e consequentemente influenciando o valor dos parâmetros calibrados. Esse aspecto pode ser visualizado na Figura 9.19 abaixo.

Figura 9.19 – Regressão linear (junta J039)

Além do que foi mencionado, nota-se também que as tensões de maior intensidade condicionam a definição do valor dos parâmetros de Weibull, sendo que tais tensões têm baixa probabilidade de ocorrência e são pouco significativas nos resultados de fadiga.

9.7. Influência das Curvas SN na Calibração Reversa

Neste item, foram estudados os valores dos parâmetros de Weibull obtidos pela calibração reversa, considerando o uso de diferentes curvas de fadiga. Para tanto, foram comparados os valores do parâmetro de forma, calibrados na condição de carregamento mínimo, utilizando as curvas "D" e "F" da Figura 8.5. Os resultados estão listados na Tabela 9.11.

MEMBRO	JUNTA	CURVA F	CURVA D	CURVA F	CURVA D	CURVA F	CURVA D	DIFERENÇA
		DANO SIM	PLIFICADA	DANO ESPECTRAL		Parâmetro "h"		NO "h"
J001-J047	J001	0.66504	0.26384	0.01318	0.00427	0.470	0.457	2.77%
J002-J048	J002	10.07645	4.69919	2.21048	0.92579	0.655	0.647	1.22%
J003-J074	J003	1.01434	0.41546	0.04379	0.01548	0.524	0.515	1.72%
J004-J050	J004	2.67609	1.17076	0.15988	0.05680	0.545	0.532	2.39%
J005-J090	J005	1.72146	0.73209	0.07611	0.02637	0.524	0.511	2.48%
J006-J051	J006	17.63114	8.36482	2.42272	1.03635	0.608	0.601	1.15%
J007-J068	J007	0.42511	0.16290	0.07043	0.02430	0.640	0.633	1.09%
J008-J052	300L	1.32722	0.55433	0.17348	0.06166	0.614	0.603	1.79%
J009-J083	J009	1.16675	0.48282	0.08888	0.03065	0.568	0.556	2.11%
J010-J084	J010	3.02437	1.33279	0.35187	0.13066	0.600	0.589	1.83%
J011-J053	J011	0.31598	0.11833	0.00537	0.00167	0.461	0.444	3.69%
J012-J085	J012	2.09962	0.90471	0.21177	0.07678	0.589	0.578	1.87%
J013-J077	J013	3.80460	1.69844	0.42565	0.16060	0.596	0.585	1.85%
J014-J075	J014	0.25329	0.09326	0.05274	0.01802	0.663	0.657	0.90%
J015-J055	J015	0.57175	0.22419	0.07457	0.02550	0.617	0.607	1.62%
J016-J072	J016	0.17476	0.06260	0.02233	0.00733	0.618	0.612	0.97%
J017-J056	J017	0.18053	0.06482	0.00486	0.00151	0.493	0.479	2.84%
J018-J086	J018	1.07860	0.44379	0.06375	0.02144	0.548	0.535	2.37%
J019-J082	J019	0.21069	0.07651	0.00374	0.00116	0.462	0.454	1.73%
J020-J076	J020	0.18125	0.06509	0.02837	0.00938	0.637	0.629	1.26%
J021-J057	J021	0.40857	0.15608	0.03723	0.01226	0.587	0.576	1.87%
J022-J080	J022	0.21073	0.07653	0.05062	0.01727	0.677	0.673	0.59%
J023-J059	J023	0.10703	0.03706	0.00347	0.00107	0.507	0.490	3.35%
J024-J060	J024	0.26936	0.09964	0.00529	0.00165	0.470	0.457	2.77%
J025-J061	J025	0.32974	0.12389	0.00750	0.00235	0.480	0.467	2.71%
J026-J062	J026	0.31796	0.11913	0.01913	0.00629	0.554	0.545	1.62%
J027-J054	J027	2.45116	1.06659	0.24740	0.09091	0.589	0.578	1.87%
J028-J063	J028	0.79880	0.32137	0.01733	0.00556	0.475	0.461	2.95%
J029-J089	J029	1.79493	0.76548	0.11712	0.04121	0.554	0.542	2.17%
J030-J064	J030	1.02157	0.41865	0.18271	0.06581	0.644	0.635	1.40%
J031-J058	J031	3.91608	1.75093	0.37627	0.14346	0.582	0.573	1.55%
J032-J065	J032	0.26971	0.09978	0.01295	0.00406	0.536	0.523	2.43%
J033-J088	J033	2.00264	0.86027	0.13535	0.04813	0.556	0.544	2.16%
J034-J046	J034	0.14776	0.05229	0.03572	0.01192	0.679	0.674	0.74%
J035-J079	J035	0.26616	0.09837	0.01928	0.00623	0.569	0.559	1.76%
J036-J066	J036	2.98005	1.31212	0.25756	0.09957	0.575	0.567	1.39%
J037-J087	J037	3.21082	1.41986	0.33677	0.12699	0.591	0.581	1.69%
J038-J067	J038	0.19917	0.07203	0.00985	0.00316	0.539	0.530	1.67%
J039-J049	J039	13.62468	6.41733	1.94751	0.84029	0.613	0.607	0.98%
J040-J078	J040	1.06189	0.43641	0.07959	0.02675	0.567	0.554	2.29%
J041-J073	J041	3.10069	1.36841	0.23844	0.09148	0.565	0.557	1.42%
J042-J081	J042	0.41591	0.15910	0.08181	0.02856	0.656	0.649	1.07%
J043-J069	J043	0.71614	0.28573	0.01727	0.00560	0.483	0.469	2.90%
J044-J070	J044	21.31385	10.15925	1.64856	0.71316	0.557	0.552	0.90%

Tabela 9.11 – Influência da curva SN na calibração reversa

MEMBRO	JUNTA	CURVA F	CURVA D	CURVA F	CURVA D	CURVA F	CURVA D	DIFERENÇA
_		DANO SIMPLIFICADA		DANO ESPECTRAL		Parâmetro "h"		NO "h"
J045-J071	J045	1.85398	0.79237	0.10291	0.03607	0.541	0.529	2.22%

A Tabela 9.11 apresenta a listagem de danos para as 45 juntas localizadas na interface com o convés, tanto pela abordagem simplificada quanto a abordagem espectral, utilizando duas curvas distintas. Na última coluna são apresentadas as diferenças obtidas em termos percentuais para o parâmetro de forma de Weibull.

Importante registrar que para a montagem da tabela anterior, foi necessário realizar uma nova fadiga espectral e uma nova fadiga simplificada do módulo, utilizando, neste caso, a curva "F". Os valores de dano obtidos pela análise espectral foram usados como referência para a calibração reversa. Este procedimento já foi descrito no item 8.10.1.

10.1. Avaliação dos Resultados

10.1.1. Comentários da Calibração Reversa

Os valores obtidos para os parâmetros de forma de Weibull na calibração reversa ficaram inferiores ao valor sugerido pela regra da DNV CN 30.7. Por conseguinte, podese dizer que o parâmetro dado pela formulação de regra é conservador, desde que mantidos os pressupostos das análises apresentadas neste trabalho. O maior valor observado foi de 0,684, em contraste ao valor de 0,84 calculado por regra.

No contexto da calibração reversa, foi desconsiderado o efeito da viga navio para a solução de fundação do tipo multicolunas. Essa premissa pode não ser verdadeira, pois é esperado que alguma parcela de esforços do casco seja transmitida para a estrutura do módulo. Isso porque a formação de rótula perfeita na ligação entre a chapa *gusset* e o convés não é possível de ser garantida. Além disso, o próprio efeito do arranjo estrutural nos planos longitudinais do navio, a depender de como estejam dispostos, podem gerar tensões adicionais relevantes na estrutura do módulo. Assim sendo, pode haver alguma interferência nos valores dos resultados da calibração quando da introdução das ações da viga navio.

A análise de fadiga simplificada utilizada como base para a calibração possui certo conservadorismo, no que se refere à definição das acelerações translacionais utilizadas nas cargas inerciais. Os valores destas acelerações foram definidos a partir de respostas de curto prazo e estão selecionadas de acordo com os máximos valores obtidos em cada faixa de carregamento do navio. Ao conduzir a análise a partir desta definição, isto é, utilizando envoltória dos valores de aceleração máxima em faixas de carregamentos distintos, tem-se uma expectativa de resultados conservadores para o dano à fadiga, porém com possíveis impactos nos resultados obtidos na calibração.

Embora não seja objeto deste trabalho avaliar a capacidade de fadiga da estrutura, observou-se que a junta J006 apresentou dano superior ao aceitável na análise de fadiga espectral para a condição de carregamento mínimo. Do ponto de vista de projeto, esse valor poderia ser reavaliado considerando medidas de mitigação, como, por exemplo, a modificação do detalhe geométrico da junta ou a ponderação de ocorrência dos carregamentos de forma mais realista, associado aos dados da embarcação.

Nos projetos de engenharia, os resultados de fadiga simplificada com parâmetros de regra não deve ser o único critério para reprovação de um detalhe estrutural, sendo recomendável, neste caso, o emprego da análise estocástica.

Entende-se que o objetivo de apresentar a metodologia de calibração reversa foi atingido. Portanto, ela pode ser utilizada como ponto de partida quando a intenção é obter parâmetros de longo prazo mais confiáveis e mais próximos da realidade.

10.1.2. Comentários da Calibração Direta

O valor do parâmetro de forma de Weibull obtido pela calibração direta para a junta J006 foi superior ao obtido na calibração reversa, ficando mais próximo do valor sugerido por regra. No entanto, esse valor não pode ser comparado de forma direta com o valor obtido pela calibração reversa porque a tensão extrema de curto prazo utilizada na análise de fadiga simplificada é incompatível com a tensão extrema de longo prazo obtida na calibração direta.

Pode-se notar que, conforme apresentado no item 9.6, a tensão extrema de curto prazo (607 MPa) usada para ajustar a distribuição de Weibull é praticamente o dobro da tensão de longo prazo (307 MPa) obtida a partir dos resultados da calibração direta. Isso mostra que, apesar do aumento no valor do parâmetro de forma de Weibull na calibração direta, a tensão extrema de longo prazo diminui. Portanto, utilizar o valor do parâmetro da calibração direta na análise de fadiga simplificada sem nenhum tipo de correção na tensão extrema é incompatível.

Pode-se interpretar, a partir do exposto acima, que a calibração direta possui certa particularidade de aplicação. Isso porque o emprego desta metodologia implica necessidade de obtenção de acelerações extremas calculadas a partir das distribuições de longo prazo, as quais devem ser compatíveis com os parâmetros de Weibull dados pela calibração direta. Com estas acelerações, podem ser calculados os carregamentos e, consequentemente, as tensões de referência da fadiga simplificada.

Quanto à curva de excedência mostrada na Figura 9.18, pode-se observar que os valores da curva de probabilidade obtidos pelo processo de soma de Rayleigh ficaram

quase que sobrepostos aos obtidos pela distribuição de Weibull com os parâmetros extraídos da regressão linear. Também foi possível confirmar que as tensões de maior valor têm baixa probabilidade de ocorrência, em comparação as tensões de menor valor.

Foi observado que o resultado dos parâmetros de Weibull é sensível à escolha da tensão máxima que vai delimitar a abrangência dos níveis de tensão na soma de Rayleigh que vão participar da calibração. Estudos conduzidos para a junta J002, extensíveis às demais juntas, demonstraram que, variando a tensão máxima, o resultado do parâmetro de escala não é constante, tendo comportamento curvilíneo, conforme mostrado na Figura 10.1.

Figura 10.1 – Variação do parâmetro de Weibull com intervalos fixos

O gráfico indicado na Figura 10.1 mostra que à medida que aumenta a escala de tensão RMS, para um número de intervalos fixo, ocorre uma grande variação no parâmetro de Weibull, podendo chegar, neste caso, a uma diferença máxima de 15%. O gráfico foi construído considerando diferentes números de intervalos.

Igualmente, também foi observado que mantendo a tensão máxima fixa, ocorre uma variação no parâmetro de Weibull, com a variação do número de intervalos de tensão. Este comportamento pode ser visualizado no gráfico indicado na Figura 10.2 adiante.

Figura 10.2 - Variação do parâmetro de Weibull com tensão RMS fixa

A diferença encontrada nos parâmetros de Weibull possivelmente está ligada ao processo de aproximação linear dado pelo método dos mínimos quadrados. Este método, como já é sabido, consiste na aproximação de uma reta a partir de pontos conhecidos. Como há uma grade quantidade de pontos no trecho final da curva de linearização logarítmica da função de probabilidade, introduz-se um peso maior nesta região da ponta da curva, condicionando, por consequência, o coeficiente angular da reta interpolada.

10.1.3. Comentário sobre a Influência da Curva SN

Pôde-se notar, pelos resultados da calibração reversa apresentados na Tabela 9.11, que a diferença máxima entre os parâmetros de Weibull calculados com a curvas D e F foi de aproximadamente 3,7 %. Em outras palavras, ao sair da curva D para a curva F, o parâmetro de forma de Weibull aumentou em 3,7 %. Este aumento no valor do parâmetro demonstra não ser expressivo ao ser comparado com o aumento da tensão obtido com a mudança da curva D para F, sendo igual a 27 %, referente a diferença entre os fatores de concentração embutidos nas curvas SN da DNV (de 1 para 1,27) apresentadas na Figura 8.5. Portanto, o autor conclui que a mudança da curva de duas inclinações não influencia nos resultados da calibração reversa.

10.2. Recomendações para Trabalhos Futuros

O tema relacionado à fadiga certamente possui uma ampla quantidade de opções para estudos acadêmicos. Porém, com relação ao conteúdo apresentado nesta dissertação, as seguintes recomendações poderiam ser consideradas para trabalhos futuros:

- Estudar os efeitos de deflexão da viga navio nos resultados da calibração.
 Para tanto, seria necessário obter a função de transferência das deflexões da viga navio e, assim, obter a resposta individual da viga navio para que, na sequência, possa ser somada a resposta de movimentos;
- Estudar os valores de calibração dos parâmetros de Weibull para outras juntas do módulo, não se limitando a apenas um módulo. Esse estudo poderia trazer alguma sugestão de valor de calibração para diferentes tipos de juntas;
- Avaliar o efeito do segundo pico dos mares bimodais nos resultados das calibrações;
- Avaliar o efeito de espectros de banda larga nos resultados das calibrações;
- Verificar se os resultados obtidos são sensíveis ao tipo de unidade flutuante;
- Estudar e propor um critério para a seleção dos pontos a serem utilizados na regressão linear, tendo em vista a calibração direta.

11. BIBLIOGRAFIA

- ABS. Fatigue Assessment Of Offshore Structures. New York: American Bureau of Shipping, 2020.
- ALMAR-NAESS, A. Fatigue Handbook. Offshore Steel Structures. Trondheim: Tapir, 1985.
- BAI, Y., e JIN, W. Marine Structural Design. Oxford: ELSEVIER, 2016.
- BARDANACHVILI, C. A. "Cálculo das Distribuições de Longo Prazo de Deflexões de Viga-Navio e de Acelerações para Unidades do Tipo FPSO em Estado de Mar Bimodais da Bacia de Campos." SOBENA, 2004: 8.
- BATALHA, A.F. *Análise de fadiga de estruturas offshore tipo topside*. Dissertação de Mestrado, Rio de Janeiro: PEC/COPPE/UFRJ, 2009.
- BHATTACHARYYA, R. Dynamics of Marine Vehicles. New York: John Wiley & Sons, 1978.
- CHAKRABARTI, S.K. Handbook of Offshore Engineering. Vol. 1. Illinois: ELSEVIER, 2005.
- CHAKRABARTI, S.K. Hydrodynamics of Offshore Structures. Illinois, 1987.
- CLOUGH, R.W., e PENZIEN, J. Dynamics of Structures. California, 1995.
- DNV CN 30.7. Fatigue Assessment of Ship Structures. Høvik: Det Norske Veritas, 2010.
- DNV-CG-0130. Wave loads. Høvik: Det Norske Veritas, 2021.
- DNV-RP-C203. Fatigue design of offshore steel structures. Høvik: Det Norske Veritas, 2021.
- DNV-RP-C210. Probabilistic methods for planning of inspection for fatigue cracks in offshore structures. Høvik: Det Norske Veritas, 2021.
- ENCARNAÇÃO, R. N. Análise de fadiga em unidades flutuantes do tipo FPSO. Dissertação de Mestrado, Rio de Janeiro: PPE/UFRJ, 2018.
- FABER, M.H. Statistics and Probability Theory. Springer, 2012.

- FALTINSEN, O.M. Sea Loads on Ships and Offshore Structures. Cambridge University Press, 1998.
- HOBBACHER, A.F. Recommendations for Fatigue Design of Welded Joints and Components. Springer, 2016.
- HUGHES, O.F, e PAIK J.K. Ship Structural Analysis and Design. New Jersey: SNAME, 2012.
- JOURNÉE, J.M.J, e MASSIE, W.W. Offshore Hydromechanics. Delft University of Technology, 2001.
- KARADENIZ, H. Stochastic Analysis of Offshore Steel Structures. Springer, 2013.
- LASSEN, T., e RECHO, N. Fatigue Life Analysis of Welded Structures. London: ISTE, 2006.
- LEVY, L.A.P. Análise de Movimentos de Corpos Flutuantes no Domínio do Tempo. Dissertação de Mestrado, Rio de Janeiro: PENO/COPPE/UFRJ, 1989.
- LOTSBERG, I. *Fatigue Design of Marine Structure*. New York: Cambridge University Press, 2016.
- MICHEL, W.H. "Sea Spectra Simplified." Marine Technology, January de 1968: 30.
- SACS. User Manual. Bentley System, 2021.
- SOARES, C. G., e MOAN, T. "Model Uncertainty in the Long-term Distribution of Wave-Induced Bending Moments for Fatigue Design of Ship Structures." *Marine Structures*, 1991: 295-315.
- SOUZA, G. L. Metodologia para Estimativa da Vida à Fadiga da Estrutura de Interface do Casco de um FPSO com Módulos da Planta com Suportação tipo Multicoluna sob Esforços de Viga-Navio. Dissertação de Mestrado, Rio de Janeiro: PPE/UFRJ, 2014.
- US Army Corps of Engineers. Shore Protection Manual. Vol. 1. Washington, DC, 1984.
- WANG, Y. Spectral fatigue analysis of a ship structural detail A practical case study. Elsevier, 2009.

ANEXO A – LISTAGEM COM RESULTADOS GERAIS

MEMBRONoDIRCAD CALCULADATENSÃO SIMPLES LENGARCADANO SIMPLES LENGARCAVIDA CALCULADAJ001-J047J001F1353.090.2638227.411J001-J047J001F0912.900.2022296.736J001-J047J001F1802.840.1651320.068J001-J047J001F1812.260.0701856.164J001-J047J001F1811.220.07087672.634J001-J047J001F2551.860.02892079.026J001-J047J001F0451.420.00787672.634J001-J047J001F2701.190.0031829.633J001-J047J001F2701.060.00122900.763J001-J047J001F0700.480.00022000.763J001-J047J001F0700.480.00022000.763J001-J047J001F0700.480.00022000.763J001-J047J001F0700.480.00022000.763J002-J048J002F0906.774.485013.378J002-J048J002F2703.540.453113.74J002-J048J002F2703.540.453113.245J002-J048J002F2703.540.453113.74J002-J048J002F1813.080.6619.0741J002-J048J002F1813.380.360113.74J002-J048J					•	0 1
J001-J047 J001 F135 3.09 0.2638 227.411 J001-J047 J001 F091 2.90 0.2022 296.736 J001-J047 J001 F180 2.84 0.1875 320.068 J001-J047 J001 F181 2.26 0.0701 856.164 J001-J047 J001 F095 1.86 0.0289 2079.002 J001-J047 J001 F315 1.38 0.0069 8645.533 J001-J047 J001 F270 1.19 0.0033 18292.683 J001-J047 J001 F001 1.14 0.0026 22900.763 J001-J047 J001 F001 1.14 0.0026 22900.763 J001-J047 J001 F000 0.48 0.000 2000000 J002-1048 J002 F091 6.49 3.0651 1.3378 J002-1048 J002 F271 3.82 0.6014 9.774 J002-1048 J002 F270 3.54	MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J001-J047J001F0912.900.20222.96.736J001-J047J001F1802.840.1875320.068J001-J047J001F1902.760.1661361.228J001-J047J001F1812.260.0701856.164J001-J047J001F2251.860.02892079.002J001-J047J001F0451.420.00787672.634J001-J047J001F7011.190.00331829.683J001-J047J001F2711.060.01832967.033J001-J047J001F0000.480.0002000000J002-J048J002F0456.864.69921.2768J002-J048J002F0906.774.485013.378J002-J048J002F0906.774.485013.378J002-J048J002F2713.820.6109.772J002-J048J002F2703.540.450313.245J002-J048J002F1353.390.3820157.056J002-J048J002F1351.150.002721978.022J002-J048J002F1351.340.435313.374J002-J048J002F1353.370.3409176.055J002-J048J002F1353.470.4155144.418J003-J074J003F1803.120.2744218.699J003-J074J003F1803.120.2744218.699 <tr< td=""><td>J001-J047</td><td>J001</td><td>F135</td><td>3.09</td><td>0.2638</td><td>227.411</td></tr<>	J001-J047	J001	F135	3.09	0.2638	227.411
J001-I047 J001 F180 2.84 0.1875 320.068 J001-I047 J001 F090 2.76 0.1661 361.228 J001-I047 J001 F181 2.26 0.0701 856.164 J001-I047 J001 F225 1.86 0.0289 2079.002 J001-I047 J001 F215 1.86 0.0069 8645.533 J001-I047 J001 F270 1.19 0.0033 18292.683 J001-J047 J001 F271 1.06 0.0018 32967.033 J001-J047 J001 F270 1.06 0.003 32967.033 J001-J047 J001 F001 0.48 0.000 200000 J002-1048 J002 F090 6.77 4.4850 13.378 J002-1048 J002 F271 3.82 0.601 9.772 J002-1048 J002 F271 3.82 0.601 9.772 J002-1048 J002 F135 3.39	J001-J047	J001	F091	2.90	0.2022	296.736
J001-J047J001F0902.760.166136.1228J001-J047J001F1812.260.0701856.164J001-J047J001F2251.860.02892079.002J001-J047J001F0451.420.00787672.634J001-J047J001F2701.190.00331829.683J001-J047J001F2701.140.00262290.763J001-J047J001F0011.140.00262290.763J001-J047J001F0010.480.00002000000J001-J047J001F0000.480.000120967.033J002-J048J002F0456.864.69921.768J002-J048J002F0506.774.48501.3378J002-J048J002F2013.540.66109.0772J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F1813.130.0025230.371J002-J048J002F1813.140.0022198.022J002-J048J002F1801.130.00272197.022J002-J048J002F1801.130.0025230.371J002-J048J003F1853.470.41551.444.18J003-J074J003F1811.760.229265.632 </td <td>J001-J047</td> <td>J001</td> <td>F180</td> <td>2.84</td> <td>0.1875</td> <td>320.068</td>	J001-J047	J001	F180	2.84	0.1875	320.068
J001-J047 J001 F181 2.26 0.0701 856.164 J001-J047 J001 F225 1.86 0.0289 2079.002 J001-J047 J001 F315 1.38 0.0669 8645.533 J001-J047 J001 F270 1.19 0.033 18292.683 J001-J047 J001 F201 1.16 0.018 32967.033 J001-J047 J001 F000 0.48 0.000 2000000 J002-J048 J002 F050 6.77 4.850 13.378 J002-J048 J002 F051 6.49 3.9651 13.589 J002-J048 J002 F051 6.49 3.9651 13.374 J002-J048 J002 F271 3.82 0.6014 99.774 J002-J048 J002 F151 3.39 0.3202 157.056 J002-J048 J002 F181 3.08 0.2605 233.971 J002-J048 J002 F180 1.13	J001-J047	J001	F090	2.76	0.1661	361.228
J001-J047J001F2251.860.02892079.002J001-J047J001F0451.420.00787672.634J001-J047J001F3151.380.00698645.533J001-J047J001F0011.140.00262290.763J001-J047J001F0011.140.00262290.763J001-J047J001F0010.480.0002000000J002-J048J002F0456.864.69921.768J002-J048J002F0916.493.966515.359J002-J048J002F0916.493.966190.772J002-J048J002F2253.910.661090.772J002-J048J002F2703.540.4503133.245J002-J048J002F1153.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.120.02721978.022J002-J048J002F1801.130.002523809.524J002-J048J002F1801.330.3409176.005J002-J048J002F1803.360.3409176.005J002-J048J003F0913.300.3409176.005J003-J074J003F1803.120.724218.699J003-J074J003F1803.120.724218.691<	J001-J047	J001	F181	2.26	0.0701	856.164
J001-J047 J001 F045 1.42 0.0078 7672.634 J001-J047 J001 F315 1.38 0.069 8645.533 J001-J047 J001 F270 1.19 0.0033 18292.683 J001-J047 J001 F271 1.06 0.018 32967.033 J001-J047 J001 F271 1.06 0.0018 32967.033 J002-J048 J002 F045 6.86 4.6992 12.768 J002-J048 J002 F091 6.49 3.9665 15.359 J002-J048 J002 F205 3.91 0.6610 90.772 J002-J048 J002 F271 3.82 0.6014 99.774 J002-J048 J002 F270 3.54 0.4503 133.245 J002-J048 J002 F181 3.08 0.2605 230.371 J002-J048 J002 F181 3.08 0.2605 230.371 J002-J048 J002 F181 1.13	J001-J047	J001	F225	1.86	0.0289	2079.002
J001-J047J001F3151.380.00698645.53J001-J047J001F2701.190.003318292.683J001-J047J001F0011.140.00262290.763J001-J047J001F2711.060.01832967.033J001-J047J001F0000.480.00002000000J002-J048J002F0916.493.906515.359J002-J048J002F0916.493.906515.359J002-J048J002F0006.033.063119.588J002-J048J002F2703.540.661090.772J002-J048J002F2713.820.601499.774J002-J048J002F1353.390.3820157.056J002-J048J002F1313.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.120.021240.6632J002-J048J002F1813.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J003F012.400.0907661.74J003-J074J003F012.400.0907661.74J003-J074J003F1803.120.2744218.699 <t< td=""><td>J001-J047</td><td>J001</td><td>F045</td><td>1.42</td><td>0.0078</td><td>7672.634</td></t<>	J001-J047	J001	F045	1.42	0.0078	7672.634
J001-J047J001F2701.190.003318292.683J001-J047J001F0011.140.002622900.763J001-J047J001F2711.060.01832967.033J001-J047J001F0000.480.00002000000J002-J048J002F0916.864.699212.768J002-J048J002F0916.493.906515.359J002-J048J002F0916.493.906515.359J002-J048J002F2006.033.063119.588J002-J048J002F2703.540.610499.774J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1813.120.0212260.632J002-J048J002F1813.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J003F012.400.0907661.74J003-J074J003F012.400.0907661.74J003-J074J003F2051.850.0727825.309<	J001-J047	J001	F315	1.38	0.0069	8645.533
J001-J047J001F0011.140.00262290.763J001-J047J001F2711.060.01832967.033J001-J047J001F0000.480.0002000000J002-J048J002F0916.674.485013.378J002-J048J002F0916.493.906515.359J002-J048J002F0916.033.063119.588J002-J048J002F2253.910.661090.772J002-J048J002F2713.820.601499.774J002-J048J002F1353.390.3820157.056J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F1813.180.022260.632J002-J048J002F1811.150.002721978.022J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J003F1913.300.3409176.005J002-J048J003F1803.120.2744218.699J003-J074J003F1803.120.2744218.691J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F2711.690.01833276.898 </td <td>J001-J047</td> <td>J001</td> <td>F270</td> <td>1.19</td> <td>0.0033</td> <td>18292.683</td>	J001-J047	J001	F270	1.19	0.0033	18292.683
J001-J047 J001 F271 1.06 0.018 32967.033 J001-J047 J001 F000 0.48 0.000 2000000 J002-J048 J002 F095 6.86 4.6992 12.768 J002-J048 J002 F090 6.77 4.4850 13.378 J002-J048 J002 F091 6.49 3.9065 15.359 J002-J048 J002 F225 3.91 0.6610 90.772 J002-J048 J002 F271 3.82 0.6014 99.774 J002-J048 J002 F270 3.54 0.4503 133.245 J002-J048 J002 F135 3.39 0.3820 157.056 J002-J048 J002 F181 3.08 0.2605 230.371 J002-J048 J002 F181 1.15 0.0027 21978.022 J002-J048 J002 F180 1.13 0.025 23809.524 J003-J074 J003 F091 3.30	J001-J047	J001	F001	1.14	0.0026	22900.763
J001-1047J001F0000.480.000200000J002-1048J002F0456.864.699212.768J002-1048J002F0916.493.906515.359J002-1048J002F0016.033.063119.588J002-1048J002F2253.910.661090.772J002-1048J002F2713.820.601499.774J002-1048J002F2703.540.4503133.245J002-1048J002F1353.390.3820157.056J002-1048J002F1813.080.2605230.371J002-1048J002F1813.080.2605230.371J002-1048J002F1811.150.002721978.022J002-1048J002F1801.130.002523809.524J002-1048J002F1801.130.002523809.524J002-1048J002F1801.130.002523809.524J002-1048J003F0913.300.3409176.005J003-1074J003F0913.140.2810213.531J003-1074J003F1803.120.2744218.699J003-1074J003F1811.770.0229261.657J003-1074J003F1811.770.0229261.659J003-1074J003F1811.760.01933278.98J003-1074J003F1811.760.019332432.432 <td>J001-J047</td> <td>J001</td> <td>F271</td> <td>1.06</td> <td>0.0018</td> <td>32967.033</td>	J001-J047	J001	F271	1.06	0.0018	32967.033
J002-J048J002F0456.864.699212.768J002-J048J002F0906.774.485013.378J002-J048J002F0916.493.906515.359J002-J048J002F2006.033.063119.588J002-J048J002F2253.910.661090.772J002-J048J002F2703.540.4503133.245J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F0012.990.2302260.632J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J002F1803.300.3409176.005J003-J074J003F0913.300.3409176.005J003-J074J003F1803.120.2744218.699J003-J074J003F1811.770.0229261.659J003-J074J003F1811.760.01833276.898J003-J074J003F1811.760.0278216.659J003-J074J003F1811.760.0023157.8474J003-J074J003F1811.760.0023157.8478 </td <td>J001-J047</td> <td>J001</td> <td>F000</td> <td>0.48</td> <td>0.0000</td> <td>2000000</td>	J001-J047	J001	F000	0.48	0.0000	2000000
JO02-J048JO02F0906.774.485013.378JO02-J048JO02F0916.493.906515.359JO02-J048JO02F2006.033.063119.588JO02-J048JO02F2713.820.601090.772JO02-J048JO02F2703.540.4503133.245JO02-J048JO02F1353.390.3820157.056JO02-J048JO02F1813.080.2605230.371JO02-J048JO02F1813.080.20252380.524JO02-J048JO02F1811.130.00252380.9524JO02-J048JO02F1801.130.00252380.9524JO02-J048JO02F1801.130.00252380.9524JO03-J074JO03F0913.300.3409176.005JO03-J074JO03F1803.120.2744218.699JO03-J074JO03F1803.120.2744218.699JO03-J074JO03F2701.850.027825.04587JO03-J074JO03F2711.690.01833276.898JO03-J074JO03F0451.520.01093243.2432JO03-J074JO03F2250.670.000231578.9474JO03-J074JO03F2250.670.000231578.9474JO03-J074JO03F2250.670.000231578.9474JO03-J074JO03F2250.670.000231	J002-J048	J002	F045	6.86	4.6992	12.768
J002-J048J002F0916.493.906515.359J002-J048J002F0006.033.063119.588J002-J048J002F2253.910.661090.772J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F1813.080.2605230.371J002-J048J002F1811.150.002721978.022J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J003-J074J003F0913.300.3409176.005J003-J074J003F0913.300.3409176.005J003-J074J003F1803.120.2744218.699J003-J074J003F1811.770.02292616.659J003-J074J003F0011.690.01833276.898J003-J074J003F0250.670.000231578.9474J003-J074J003F0250.670.000231578.9474J003-J074J003F0250.670.000231578.9474J003-J074J003F0250.670.000231578.9474J003-J074J003F0250.670.002	J002-J048	J002	F090	6.77	4.4850	13.378
J002-J048J002F0006.033.063119.588J002-J048J002F2253.910.661090.772J002-J048J002F2703.540.601499.774J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F0112.990.2302260.632J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J003-J074J003F0913.300.3409176.005J003-J074J003F0913.120.2744218.699J003-J074J003F1803.120.2744218.699J003-J074J003F1811.770.02292616.659J003-J074J003F2701.850.0782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0011.660.01932432.432J003-J074J003F0011.660.01932432.432J003-J074J003F1811.770.022315789.474J003-J074J003F0011.660.01932432.432J003-J074J003F0011.660.01932432.43	J002-J048	J002	F091	6.49	3.9065	15.359
J002-J048J002F2253.910.661090.772J002-J048J002F2713.820.601499.774J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F0012.990.2302260.632J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1803.300.3409176.005J003-J074J003F0913.300.3409176.005J003-J074J003F1803.120.2744218.699J003-J074J003F1803.120.2744218.699J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0914.571.170851.249J003-J074J003F0914.571.170851.249J003-J074J003F0914.571.170851.249J003-J074J003F0914.571.170851.249J003-J074J004F0914.571.172852.504	J002-J048	J002	F000	6.03	3.0631	19.588
J002-J048J002F2713.820.601499.774J002-J048J002F1353.390.3820133.245J002-J048J002F1353.390.3820157.056J002-J048J002F0112.990.2302260.632J002-J048J002F1351.150.002721978.022J002-J048J002F1801.130.002523809.524J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F1811.770.02292616.659J003-J074J003F2701.850.02782160.605J003-J074J003F2711.690.01833276.898J003-J074J003F2711.690.01833276.894J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J004F0914.541.142852.504J003-J074J004F1353.930.674988.909J004-J050J004F1453.550.4553131.778J004-J050J004F1803.280.351179.03	J002-J048	J002	F225	3.91	0.6610	90.772
J002-J048J002F2703.540.4503133.245J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F0012.990.2302260.632J002-J048J002F1801.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F1802.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F2711.690.01833276.898J003-J074J003F2711.690.01833276.898J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J004F0904.541.142852.504J004-J050J004F0953.930.6749<	J002-J048	J002	F271	3.82	0.6014	99.774
J002-J048J002F1353.390.3820157.056J002-J048J002F1813.080.2605230.371J002-J048J002F0012.990.2302260.632J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F1012.400.0907661.74J003-J074J003F2011.850.02782160.605J003-J074J003F2101.850.02782160.605J003-J074J003F2111.690.01833276.898J003-J074J003F0011.520.01095504.587J003-J074J003F0011.660.001932432.432J003-J074J003F2250.670.0002315789.474J003-J074J003F2051.671.170851.249J003-J074J004F0914.571.170851.249J004-J050J004F0953.550.4553131.778J004-J050J004F1803.280.351179.03J004-J050J004F1803.280.3551.4554	J002-J048	J002	F270	3.54	0.4503	133.245
J002-J048J002F1813.080.2605230.371J002-J048J002F0012.990.2302260.632J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0112.400.0907661.74J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2701.690.01833276.898J003-J074J003F2711.690.01833276.898J003-J074J003F0011.060.001932432.432J003-J074J003F0011.060.001932432.432J003-J074J003F0014.571.170851.249J003-J074J003F0250.6770.000231578.9474J003-J074J004F0914.541.142852.504J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J002-J048	J002	F135	3.39	0.3820	157.056
J002-J048J002F0012.990.2302260.632J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0112.400.907661.74J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0001.060.001932432.432J003-J074J003F0250.670.0002315789.474J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J004-J050J004F0904.541.142852.504J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J002-J048	J002	F181	3.08	0.2605	230.371
J002-J048J002F3151.150.002721978.022J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F1811.770.02292616.659J003-J074J003F1811.770.02292616.659J003-J074J003F2701.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0451.520.0109315789.474J003-J074J003F250.670.0002315789.474J003-J074J003F250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F1353.930.674988.909J004-J050J004F1453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J002-J048	J002	F001	2.99	0.2302	260.632
J002-J048J002F1801.130.002523809.524J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F2711.690.01833276.898J003-J074J003F0001.060.001932432.432J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J003-J074J003F2053.673.1285.504J004-J050J004F0914.571.170851.249J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351131.778J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3553.55	J002-J048	J002	F315	1.15	0.0027	21978.022
J003-J074J003F1353.470.4155144.418J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03J004-J050J004F0902.720.1554386.051	J002-J048	J002	F180	1.13	0.0025	23809.524
J003-J074J003F0913.300.3409176.005J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J003-J074J003F2550.670.0002315789.474J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J003-J074	J003	F135	3.47	0.4155	144.418
J003-J074J003F0903.140.2810213.531J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J004-J050J004F0914.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J003-J074	J003	F091	3.30	0.3409	176.005
J003-J074J003F1803.120.2744218.699J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J004-J050J004F0914.541.142852.504J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.3351179.03	J003-J074	J003	F090	3.14	0.2810	213.531
J003-J074J003F0012.400.0907661.74J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1803.280.335136.051	J003-J074	J003	F180	3.12	0.2744	218.699
J003-J074J003F3152.280.0727825.309J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2550.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F1953.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1802.720.1554386.051	J003-J074	J003	F001	2.40	0.0907	661.74
J003-J074J003F2701.850.02782160.605J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F1353.930.674988.909J004-J050J004F1453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F315	2.28	0.0727	825.309
J003-J074J003F1811.770.02292616.659J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F1353.930.674988.909J004-J050J004F1453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F270	1.85	0.0278	2160.605
J003-J074J003F2711.690.01833276.898J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F1803.280.3351179.03J004-J050J004F1802.720.1554386.051	J003-J074	J003	F181	1.77	0.0229	2616.659
J003-J074J003F0451.520.01095504.587J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F271	1.69	0.0183	3276.898
J003-J074J003F0001.060.001932432.432J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F045	1.52	0.0109	5504.587
J003-J074J003F2250.670.0002315789.474J004-J050J004F0914.571.170851.249J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F000	1.06	0.0019	32432.432
J004-J050J004F0914.571.170851.249J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J003-J074	J003	F225	0.67	0.0002	315789.474
J004-J050J004F0904.541.142852.504J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J004-J050	J004	F091	4.57	1.1708	51.249
J004-J050J004F1353.930.674988.909J004-J050J004F0453.550.4553131.778J004-J050J004F1803.280.3351179.03J004-J050J004F0002.720.1554386.051	J004-J050	J004	F090	4.54	1.1428	52.504
J004-J050 J004 F045 3.55 0.4553 131.778 J004-J050 J004 F180 3.28 0.3351 179.03 J004-J050 J004 F000 2.72 0.1554 386.051	J004-J050	J004	F135	3.93	0.6749	88.909
J004-J050 J004 F180 3.28 0.3351 179.03 J004-J050 J004 F000 2.72 0.1554 386.051	J004-J050	J004	F045	3.55	0.4553	131.778
J004-J050 J004 F000 2.72 0.1554 386.051	J004-J050	J004	F180	3.28	0.3351	179.03
	J004-J050	J004	F000	2.72	0.1554	386.051

Tabela A.1 – Resultado de dano para todas as juntas (fadiga simplificada)

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J004-J050	J004	F270	1.86	0.0290	2072.539
J004-J050	J004	F271	1.83	0.0266	2254.791
J004-J050	J004	F181	1.77	0.0226	2657.219
J004-J050	J004	F225	1.24	0.0040	14962.594
J004-J050	J004	F315	1.22	0.0037	16042.781
J004-J050	J004	F001	1.12	0.0025	24489.796
J005-J090	J005	F181	4.02	0.7321	81.957
J005-J090	J005	F180	3.71	0.5413	110.838
J005-J090	J005	F135	3.36	0.3673	163.376
J005-J090	J005	F225	3.32	0.3497	171.576
J005-J090	J005	F091	2.14	0.0546	1099.505
J005-J090	J005	F000	2.08	0.0476	1261.299
J005-J090	J005	F001	2.00	0.0398	1506.024
J005-J090	J005	F090	1.87	0.0294	2041.511
J005-J090	J005	F315	1.64	0.0160	3747.658
J005-J090	J005	F271	1.58	0.0133	4518.072
J005-J090	J005	F045	1.37	0.0067	9009.009
J005-J090	J005	F270	1.26	0.0043	13856.813
J006-J051	J006	F090	8.20	8.3648	7.173
J006-J051	J006	F091	8.06	7.8942	7.601
J006-J051	J006	F045	7.12	5.2883	11.346
J006-J051	J006	F000	5.50	2.2353	26.842
J006-J051	J006	F135	5.27	1.9321	31.055
J006-J051	J006	F271	5.26	1.9183	31.278
J006-J051	J006	F270	5.11	1.7370	34.542
J006-J051	J006	F225	4.17	0.8376	71.636
J006-J051	J006	F180	2.89	0.1995	300.782
J006-J051	J006	F181	2.55	0.1183	507.142
J006-J051	J006	F315	2.32	0.0788	761.325
J006-J051	J006	F001	1.20	0.0035	17341.04
J007-J068	J007	F000	2.75	0.1629	368.324
J007-J068	J007	F045	2.29	0.0740	810.373
J007-J068	J007	F001	2.27	0.0716	837.989
J007-J068	J007	F181	2.07	0.0465	1290.323
J007-J068	J007	F225	1.61	0.0143	4195.804
J007-J068	J007	F180	1.59	0.0136	4405.286
J007-J068	J007	F315	1.46	0.0092	6557.377
J007-J068	J007	F090	1.44	0.0085	7050.529
J007-J068	J007	F091	1.28	0.0048	12526.096
J007-J068	J007	F135	0.78	0.0004	150000
J007-J068	J007	F271	0.36	0.0000	600000
J007-J068	J007	F270	0.12	0.0000	INFINITA
J008-J052	J008	F090	3.74	0.5543	108.239
J008-J052	J008	F045	3.65	0.5081	118.092
J008-J052	J008	F091	3.62	0.4906	122.292
J008-J052	300f	F000	3.17	0.2925	205.163

MEMBRO	NÓ	DIREÇAO DA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J008-J052	J008	F315	2.51	0.1101	544.86
J008-J052	J008	F001	2.47	0.1027	584.226
J008-J052	J008	F135	2.19	0.0603	994.86
J008-J052	J008	F270	2.13	0.0532	1127.396
J008-J052	J008	F271	2.00	0.0400	1501.126
J008-J052	J008	F225	1.50	0.0103	5836.576
J008-J052	J008	F180	1.11	0.0023	26200.873
J008-J052	J008	F181	1.02	0.0016	38709.677
J009-J083	1009	F091	3.60	0.4828	124.27
J009-J083	1009	F270	3.58	0.4732	126.794
J009-J083	1009	F090	3.57	0.4661	128.725
J009-J083	1009	F271	3.55	0.4567	131.372
J009-J083	1009	F135	2.75	0.1629	368.324
J009-J083	1009	F315	2.73	0.1584	378.764
J009-J083	1009	F045	2.34	0.0813	738.098
J009-J083	1009	F225	2.32	0.0785	764.721
J009-J083	1009	F180	1.87	0.0294	2040.816
J009-J083	1009	F001	1.74	0.0210	2851.711
J009-J083	J009	F000	1.18	0.0032	18927.445
J009-J083	1009	F181	1.16	0.0029	20477.816
J010-J084	J010	F090	4.74	1.3328	45.018
J010-J084	J010	F091	4.73	1.3266	45.227
J010-J084	J010	F271	4.10	0.7882	76.125
J010-J084	J010	F270	4.10	0.7838	76.55
J010-J084	J010	F045	3.49	0.4258	140.908
J010-J084	J010	F135	3.41	0.3918	153.155
J010-J084	J010	F225	2.85	0.1888	317.763
J010-J084	J010	F315	2.78	0.1694	354.129
J010-J084	J010	F000	2.18	0.0588	1020.061
J010-J084	J010	F180	2.07	0.0471	1273.074
J010-J084	J010	F181	1.54	0.0116	5185.825
J010-J084	J010	F001	1.43	0.0082	7281.553
J011-J053	J011	F225	2.55	0.1183	507.057
J011-J053	J011	F135	2.51	0.1103	543.872
J011-J053	J011	F180	2.44	0.0969	618.94
J011-J053	J011	F181	2.37	0.0858	699.301
J011-J053	J011	F271	2.34	0.0807	743.771
J011-J053	J011	F091	2.23	0.0653	918.274
J011-J053	J011	F270	2.22	0.0638	940.586
J011-J053	J011	F090	2.12	0.0521	1151.41
J011-J053	J011	F045	1.29	0.0048	12396.694
J011-J053	J011	F000	1.10	0.0023	26431.718
J011-J053	J011	F315	1.04	0.0017	34682.081
J011-J053	J011	F001	0.46	0.0000	2000000
J012-J085	J012	F091	4.26	0.9047	66.32
J012-J085	J012	F090	4.26	0.9030	66.445
MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
-----------	------	------------------------	-------------------------------	--------	-------------------
J012-J085	J012	F270	4.20	0.8639	69.454
J012-J085	J012	F271	4.20	0.8622	69.588
J012-J085	J012	F135	3.04	0.2460	243.912
J012-J085	J012	F045	3.01	0.2376	252.547
J012-J085	J012	F315	2.99	0.2289	262.135
J012-J085	J012	F225	2.96	0.2209	271.653
J012-J085	J012	F180	1.77	0.0229	2624.672
J012-J085	J012	F000	1.74	0.0208	2891.566
J012-J085	J012	F001	1.72	0.0198	3031.834
J012-J085	J012	F181	1.68	0.0179	3353.829
J013-J077	J013	F090	5.08	1.6984	35.327
J013-J077	J013	F091	5.05	1.6629	36.081
J013-J077	J013	F271	4.40	1.0213	58.749
J013-J077	J013	F270	4.37	0.9958	60.255
J013-J077	J013	F045	3.88	0.6394	93.835
J013-J077	J013	F135	3.50	0.4298	139.616
J013-J077	J013	F225	3.20	0.3041	197.329
J013-J077	J013	F315	2.82	0.1809	331.767
J013-J077	J013	F000	2.54	0.1159	517.822
J013-J077	J013	F180	2.00	0.0399	1505.646
J013-J077	J013	F181	1.86	0.0288	2083.333
J013-J077	J013	F001	1.32	0.0055	10830.325
J014-J075	J014	F000	2.41	0.0933	643.363
J014-J075	J014	F001	2.28	0.0728	824.629
J014-J075	J014	F045	1.88	0.0300	1999.334
J014-J075	J014	F181	1.71	0.0195	3073.77
J014-J075	J014	F315	1.65	0.0163	3692.308
J014-J075	J014	F180	1.58	0.0133	4511.278
J014-J075	J014	F225	1.18	0.0032	19047.619
J014-J075	J014	F135	0.95	0.0011	56074.766
J014-J075	J014	F090	0.69	0.0002	272727.273
J014-J075	J014	F270	0.56	0.0001	750000
J014-J075	J014	F091	0.54	0.0001	857142.857
J014-J075	J014	F271	0.41	0.0000	3000000
J015-J055	J015	F090	2.97	0.2242	267.63
J015-J055	J015	F091	2.91	0.2048	292.94
J015-J055	J015	F045	2.80	0.1759	341.2
J015-J055	J015	F315	2.45	0.0992	604.595
J015-J055	J015	F000	2.41	0.0926	647.808
J015-J055	J015	F270	2.34	0.0812	739.372
J015-J055	J015	F001	2.27	0.0716	838.574
J015-J055	J015	F271	2.25	0.0687	873.744
J015-J055	J015	F135	1.99	0.0395	1519.372
J015-J055	J015	F225	1.37	0.0065	9188.361
J015-J055	J015	F180	1.27	0.0045	13274.336
J015-J055	J015	F181	0.74	0.0003	187500

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J016-J072	J016	F180	2.21	0.0626	958.466
J016-J072	J016	F181	2.19	0.0611	981.675
J016-J072	J016	F001	1.85	0.0281	2132.954
J016-J072	J016	F000	1.84	0.0273	2196.997
J016-J072	J016	F135	1.62	0.0149	4037.685
J016-J072	J016	F225	1.60	0.0140	4291.845
J016-J072	J016	F315	1.27	0.0045	13422.819
J016-J072	J016	F045	1.24	0.0041	14563.107
J016-J072	J016	F091	0.61	0.0001	545454.545
J016-J072	J016	F090	0.46	0.0000	2000000
J016-J072	J016	F270	0.16	0.0000	INFINITA
J016-J072	J016	F271	0.31	0.0000	INFINITA
J017-J056	J017	F271	2.22	0.0648	925.64
J017-J056	J017	F270	2.22	0.0642	934.725
J017-J056	J017	F090	1.96	0.0369	1626.457
J017-J056	J017	F091	1.96	0.0367	1636.215
J017-J056	J017	F225	1.79	0.0237	2534.854
J017-J056	J017	F315	1.74	0.0207	2901.354
J017-J056	J017	F045	1.58	0.0132	4555.809
J017-J056	J017	F135	1.55	0.0119	5025.126
J017-J056	J017	F181	1.37	0.0066	9118.541
J017-J056	J017	F001	1.32	0.0054	11029.412
J017-J056	J017	F000	1.24	0.0040	15000
J017-J056	J017	F180	1.19	0.0033	18126.888
J018-J086	J018	F090	3.53	0.4438	135.199
J018-J086	J018	F091	3.52	0.4430	135.44
J018-J086	J018	F271	3.21	0.3069	195.51
J018-J086	J018	F270	3.21	0.3061	196.027
J018-J086	J018	F045	2.56	0.1195	502.134
J018-J086	J018	F135	2.53	0.1146	523.423
J018-J086	J018	F225	2.24	0.0672	892.99
J018-J086	J018	F315	2.22	0.0640	938.086
J018-J086	J018	F000	1.55	0.0121	4979.253
J018-J086	J018	F180	1.52	0.0108	5550.416
J018-J086	J018	F181	1.23	0.0040	15151.515
J018-J086	J018	F001	1.20	0.0034	17441.86
J019-J082	J019	F225	2.31	0.0765	784.211
J019-J082	J019	F271	2.27	0.0709	846.382
J019-J082	J019	F270	2.18	0.0596	1007.388
J019-J082	J019	F181	2.06	0.0458	1308.901
J019-J082	J019	F135	1.84	0.0273	2201.027
J019-J082	J019	F180	1.75	0.0215	2785.515
J019-J082	J019	F091	1.72	0.0196	3054.99
J019-J082	J019	F090	1.65	0.0164	3669.725
J019-J082	J019	F315	1.23	0.0038	15706.806
J019-J082	J019	F045	1.03	0.0016	37267.081

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J019-J082	J019	F000	0.76	0.0004	166666.667
J019-J082	J019	F001	0.53	0.0001	1000000
J020-J076	J020	F181	2.23	0.0651	921.801
J020-J076	J020	F180	2.20	0.0614	977.836
J020-J076	J020	F000	1.99	0.0395	1518.219
J020-J076	J020	F001	1.97	0.0370	1622.499
J020-J076	J020	F225	1.62	0.0151	3984.064
J020-J076	J020	F135	1.57	0.0130	4633.205
J020-J076	J020	F045	1.39	0.0072	8391.608
J020-J076	J020	F315	1.34	0.0060	10067.114
J020-J076	J020	F091	0.33	0.0000	600000
J020-J076	J020	F271	0.40	0.0000	600000
J020-J076	J020	F090	0.16	0.0000	INFINITA
J020-J076	J020	F270	0.23	0.0000	INFINITA
J021-J057	J021	F270	2.72	0.1561	384.418
J021-J057	J021	F315	2.70	0.1502	399.494
J021-J057	J021	F271	2.64	0.1362	440.496
J021-J057	J021	F090	2.60	0.1287	466.237
J021-J057	J021	F045	2.53	0.1151	521.241
J021-J057	J021	F091	2.52	0.1131	530.645
J021-J057	J021	F001	2.38	0.0880	681.818
J021-J057	J021	F000	2.21	0.0627	956.938
J021-J057	J021	F225	1.62	0.0148	4062.288
J021-J057	J021	F135	1.57	0.0129	4658.385
J021-J057	J021	F181	0.86	0.0006	93750
J021-J057	J021	F180	0.85	0.0006	100000
J022-J080	J022	F001	2.31	0.0765	784.006
J022-J080	J022	F000	2.30	0.0750	800
J022-J080	J022	F180	1.83	0.0264	2276.176
J022-J080	J022	F181	1.82	0.0256	2341.92
J022-J080	J022	F315	1.71	0.0193	3115.265
J022-J080	J022	F045	1.69	0.0183	3285.871
J022-J080	J022	F135	1.23	0.0039	15584.416
J022-J080	J022	F225	1.21	0.0036	16806.723
J022-J080	J022	F270	0.55	0.0001	857142.857
J022-J080	J022	F090	0.44	0.0000	3000000
J022-J080	J022	F271	0.39	0.0000	600000
J022-J080	J022	F091	0.28	0.0000	INFINITA
J023-J059	J023	F270	1.97	0.0371	1618.996
J023-J059	J023	F271	1.96	0.0370	1623.816
J023-J059	J023	F090	1.67	0.0172	3488.372
J023-J059	J023	F091	1.67	0.0172	3494.467
J023-J059	J023	F315	1.53	0.0114	5249.344
J023-J059	J023	F225	1.51	0.0108	5581.395
J023-J059	J023	F045	1.30	0.0051	11764.706
J023-J059	J023	F135	1.29	0.0049	12145.749

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J023-J059	J023	F001	1.15	0.0027	21978.022
J023-J059	J023	F181	1.11	0.0023	26200.873
J023-J059	J023	F000	0.99	0.0013	45112.782
J023-J059	J023	F180	0.96	0.0012	52173.913
J024-J060	J024	F271	2.45	0.0996	602.168
J024-J060	J024	F225	2.41	0.0919	653.239
J024-J060	J024	F270	2.37	0.0867	692.121
J024-J060	J024	F181	2.10	0.0502	1194.505
J024-J060	J024	F135	1.53	0.0113	5328.597
J024-J060	J024	F315	1.44	0.0085	7025.761
J024-J060	J024	F091	1.42	0.0080	7547.17
J024-J060	J024	F180	1.39	0.0070	8559.201
J024-J060	J024	F090	1.35	0.0061	9836.066
J024-J060	J024	F045	0.93	0.0010	60606.061
J024-J060	J024	F001	0.85	0.0006	98360.656
J024-J060	J024	F000	0.63	0.0001	428571.429
J025-J061	J025	F271	2.58	0.1239	484.301
J025-J061	J025	F270	2.54	0.1154	519.931
J025-J061	J025	F225	2.25	0.0689	871.333
J025-J061	J025	F181	1.78	0.0232	2591.793
J025-J061	J025	F315	1.73	0.0201	2980.626
J025-J061	J025	F091	1.45	0.0086	6952.491
J025-J061	J025	F090	1.43	0.0081	7444.169
J025-J061	J025	F135	1.29	0.0049	12219.959
J025-J061	J025	F180	1.06	0.0019	32432.432
J025-J061	J025	F045	1.04	0.0017	35714.286
J025-J061	J025	F001	1.03	0.0016	37037.037
J025-J061	J025	F000	0.70	0.0002	260869.565
J026-J062	J026	F270	2.55	0.1191	503.651
J026-J062	J026	F271	2.50	0.1094	548.546
J026-J062	J026	F315	2.34	0.0816	735.745
J026-J062	J026	F090	2.33	0.0795	754.907
J026-J062	J026	F091	2.30	0.0750	799.787
J026-J062	J026	F045	2.05	0.0448	1338.389
J026-J062	J026	F001	1.95	0.0360	1666.667
J026-J062	J026	F225	1.71	0.0196	3069.054
J026-J062	J026	F135	1.67	0.0173	3464.203
J026-J062	J026	F000	1.66	0.0168	3577.818
J026-J062	J026	F180	1.13	0.0025	23809.524
J026-J062	J026	F181	1.07	0.0019	31088.083
J027-J054	J027	F270	4.45	1.0666	56.254
J027-J054	J027	F271	4.45	1.0652	56.326
J027-J054	J027	F091	4.36	0.9836	61.003
J027-J054	J027	F090	4.35	0.9823	61.083
J027-J054	J027	F315	3.18	0.2960	202.682
J027-J054	J027	F225	3.16	0.2891	207.577

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J027-J054	J027	F135	3.08	0.2608	230.026
J027-J054	J027	F045	3.06	0.2546	235.655
J027-J054	J027	F001	1.86	0.0288	2085.506
J027-J054	J027	F181	1.84	0.0269	2228.826
J027-J054	J027	F180	1.76	0.0223	2690.583
J027-J054	J027	F000	1.74	0.0208	2890.173
J028-J063	J028	F091	3.25	0.3214	186.701
J028-J063	J028	F090	3.18	0.2952	203.224
J028-J063	J028	F135	2.96	0.2212	271.26
J028-J063	J028	F180	2.44	0.0973	616.65
J028-J063	J028	F045	2.11	0.0515	1166.181
J028-J063	J028	F225	1.88	0.0303	1982.816
J028-J063	J028	F181	1.86	0.0287	2087.683
J028-J063	J028	F271	1.70	0.0186	3234.501
J028-J063	J028	F270	1.63	0.0155	3878.474
J028-J063	J028	F000	1.24	0.0040	14851.485
J028-J063	J028	F315	1.19	0.0033	18292.683
J028-J063	J028	F001	0.74	0.0003	200000
J029-J089	J029	F271	4.07	0.7655	78.382
J029-J089	J029	F270	4.04	0.7455	80.487
J029-J089	J029	F090	3.67	0.5171	116.041
J029-J089	J029	F091	3.64	0.5019	119.555
J029-J089	J029	F225	3.11	0.2707	221.664
J029-J089	J029	F315	2.75	0.1640	365.876
J029-J089	J029	F045	2.71	0.1531	391.978
J029-J089	J029	F135	2.35	0.0833	719.942
J029-J089	J029	F181	2.03	0.0426	1407.46
J029-J089	J029	F000	1.63	0.0151	3963.012
J029-J089	J029	F001	1.52	0.0111	5410.28
J029-J089	J029	F180	1.12	0.0025	24390.244
J030-J064	J030	F270	3.47	0.4187	143.318
J030-J064	J030	F271	3.39	0.3829	156.707
J030-J064	J030	F315	3.35	0.3645	164.596
J030-J064	J030	F090	3.25	0.3216	186.55
J030-J064	J030	F045	3.23	0.3159	189.928
J030-J064	J030	F091	3.16	0.2895	207.24
J030-J064	J030	F001	2.97	0.2234	268.637
J030-J064	J030	F000	2.94	0.2141	280.23
J030-J064	J030	F225	2.37	0.0866	693.001
J030-J064	J030	F135	2.18	0.0591	1014.885
J030-J064	J030	F181	1.58	0.0133	4501.125
J030-J064	J030	F180	1.44	0.0086	7009.346
J031-J058	J031	F270	5.12	1.7509	34.268
J031-J058	J031	F271	5.08	1.7052	35.186
J031-J058	J031	F091	4.58	1.1740	51.106
J031-J058	J031	F090	4.54	1.1388	52.689

MEMBRO	NÓ	DIREÇAO DA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J031-J058	J031	F315	3.94	0.6787	88.4
J031-J058	J031	F225	3.45	0.4096	146.474
J031-J058	J031	F135	3.39	0.3825	156.879
J031-J058	J031	F045	2.91	0.2051	292.526
J031-J058	J031	F001	2.59	0.1264	474.834
J031-J058	J031	F180	2.04	0.0442	1357.159
J031-J058	J031	F181	1.90	0.0318	1887.98
J031-J058	J031	F000	1.36	0.0063	9584.665
J032-J065	J032	F090	2.45	0.0998	601.323
J032-J065	J032	F091	2.45	0.0989	606.98
J032-J065	J032	F270	2.08	0.0480	1250.782
J032-J065	J032	F271	2.08	0.0477	1256.808
J032-J065	J032	F045	1.91	0.0324	1854.141
J032-J065	J032	F135	1.84	0.0271	2211.574
J032-J065	J032	F315	1.61	0.0145	4132.231
J032-J065	J032	F225	1.57	0.0130	4618.938
J032-J065	J032	F000	1.39	0.0071	8474.576
J032-J065	J032	F180	1.28	0.0048	12631.579
J032-J065	J032	F001	1.19	0.0033	18348.624
J032-J065	J032	F181	1.12	0.0024	24590.164
J033-J088	J033	F271	4.20	0.8603	69.746
J033-J088	J033	F270	4.17	0.8364	71.738
J033-J088	J033	F090	3.60	0.4820	124.484
J033-J088	J033	F091	3.57	0.4657	128.852
J033-J088	J033	F225	3.25	0.3235	185.5
J033-J088	J033	F315	2.85	0.1903	315.341
J033-J088	J033	F045	2.65	0.1401	428.235
J033-J088	J033	F135	2.26	0.0691	868.307
J033-J088	J033	F181	2.17	0.0578	1037.703
J033-J088	J033	F001	1.60	0.0142	4213.483
J033-J088	J033	F000	1.57	0.0128	4698.512
J033-J088	J033	F180	1.01	0.0014	41958.042
J034-J046	J034	F001	2.12	0.0523	1147.447
J034-J046	J034	F000	2.09	0.0495	1211.387
J034-J046	J034	F180	1.86	0.0284	2110.447
J034-J046	J034	F181	1.83	0.0267	2250.563
J034-J046	J034	F315	1.55	0.0121	4954.583
J034-J046	J034	F045	1.51	0.0106	5687.204
J034-J046	J034	F135	1.29	0.0049	12295.082
J034-J046	J034	F225	1.24	0.0041	14563.107
JU34-JU46	J034	F090	0.31	0.0000	
JU34-JU46	JU34	FU91	0.16	0.0000	
JU34-JU46	1034	F2/U	0.28	0.0000	
JU34-JU46	1034	FZ/1	0.11	0.0000	
1032-1070	1035	F101	2.44	0.0984	656.059
1032-10/8	1032	F180	2.40	0.0913	829.950

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J035-J079	J035	F225	1.85	0.0278	2161.383
J035-J079	J035	F000	1.79	0.0238	2525.253
J035-J079	J035	F135	1.78	0.0230	2607.562
J035-J079	J035	F001	1.75	0.0213	2822.201
J035-J079	J035	F045	1.19	0.0033	18181.818
J035-J079	J035	F315	1.12	0.0024	24793.388
J035-J079	J035	F271	0.89	0.0008	75949.367
J035-J079	J035	F270	0.73	0.0003	206896.552
J035-J079	J035	F091	0.49	0.0000	1500000
J035-J079	J035	F090	0.33	0.0000	600000
J036-J066	J036	F270	4.72	1.3121	45.728
J036-J066	J036	F271	4.61	1.2074	49.693
J036-J066	J036	F315	4.47	1.0795	55.582
J036-J066	J036	F001	3.85	0.6207	96.673
J036-J066	J036	F225	3.11	0.2710	221.37
J036-J066	J036	F045	2.98	0.2273	263.98
J036-J066	J036	F000	2.89	0.2013	298.003
J036-J066	J036	F090	2.71	0.1527	392.902
J036-J066	J036	F091	2.60	0.1282	468.165
J036-J066	J036	F181	1.93	0.0340	1764.187
J036-J066	J036	F135	1.61	0.0145	4129.387
J036-J066	J036	F180	0.96	0.0011	53097.345
J037-J087	J037	F270	4.83	1.4199	42.258
J037-J087	J037	F271	4.80	1.3906	43.146
J037-J087	J037	F091	4.35	0.9801	61.221
J037-J087	J037	F090	4.32	0.9571	62.693
J037-J087	J037	F315	3.66	0.5107	117.497
J037-J087	J037	F225	3.30	0.3443	174.292
J037-J087	J037	F135	3.18	0.2963	202.518
J037-J087	J037	F045	2.83	0.1838	326.495
J037-J087	J037	F001	2.35	0.0835	718.907
J037-J087	J037	F180	1.88	0.0301	1991.371
J037-J087	J037	F181	1.86	0.0285	2108.222
J037-J087	J037	F000	1.38	0.0069	8658.009
J038-J067	1038	F135	2.28	0.0720	832.986
1038-1067	1038	F091	2.18	0.0590	1016.26
1038-1067	1038	F090	2.06	0.0459	1306.051
1038-1067	1038	F315	2.00	0.0397	1511.335
J038-J067	1038	F180	1.99	0.0389	1544.004
1038-1067	1038	F270	1.90	0.0314	1913.265
1038-1067	1038	F225	1.87	0.0294	2038.043
	1030	F2/1	1.78	0.0233	2580.645
1030-1007	1030	F045	1./3	0.0207	2904.163
	8501	FUU1	1./1	0.0191	3149.6Ub
1030-1007	1030	F181	1.70	0.0127	3180.405
1038-1067	1038	FUUU	1.57	0.0127	4/39.336

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J039-J049	J039	F270	7.55	6.4173	9.35
J039-J049	J039	F315	7.55	6.4144	9.354
J039-J049	J039	F271	7.26	5.6570	10.606
J039-J049	J039	F001	6.58	4.1005	14.632
J039-J049	J039	F091	4.14	0.8166	73.477
J039-J049	J039	F135	4.14	0.8162	73.513
J039-J049	J039	F225	3.94	0.6816	88.028
J039-J049	J039	F090	3.85	0.6237	96.202
J039-J049	J039	F180	3.17	0.2928	204.918
J039-J049	J039	F000	2.97	0.2253	266.288
J039-J049	J039	F181	1.49	0.0098	6109.98
J039-J049	J039	F045	1.13	0.0025	23904.382
J040-J078	J040	F225	3.51	0.4364	137.485
J040-J078	J040	F181	3.39	0.3810	157.48
J040-J078	J040	F271	2.95	0.2172	276.192
J040-J078	J040	F000	2.75	0.1628	368.618
J040-J078	J040	F270	2.74	0.1602	374.625
J040-J078	J040	F045	2.40	0.0913	657.462
J040-J078	J040	F180	2.23	0.0659	910.747
J040-J078	J040	F001	1.71	0.0195	3076.923
J040-J078	J040	F090	1.65	0.0162	3701.419
J040-J078	J040	F091	1.44	0.0084	7109.005
J040-J078	J040	F135	1.12	0.0025	24291.498
J040-J078	J040	F315	0.90	0.0008	73170.732
J041-J073	J041	F270	4.78	1.3684	43.847
J041-J073	J041	F271	4.68	1.2698	47.25
J041-J073	J041	F315	4.45	1.0625	56.472
J041-J073	J041	F001	3.89	0.6445	93.103
J041-J073	J041	F225	3.21	0.3050	196.708
J041-J073	J041	F000	2.36	0.0840	714.711
J041-J073	J041	F091	2.17	0.0587	1022.495
J041-J073	J041	F181	2.10	0.0503	1192.132
J041-J073	J041	F090	2.08	0.0480	1250.521
J041-J073	J041	F135	1.81	0.0251	2387.585
J041-J073	J041	F045	1.75	0.0213	2814.259
J041-J073	J041	F180	1.19	0.0033	18237.082
J042-J081	J042	F001	2.73	0.1591	377.121
J042-J081	J042	F000	2.36	0.0841	713.521
J042-J081	J042	F315	2.24	0.0665	901.713
J042-J081	J042	F180	2.00	0.0402	1492.909
J042-J081	J042	F181	1.62	0.0151	3978.78
J042-J081	J042	F045	1.58	0.0133	4504.505
J042-J081	J042	F135	1.50	0.0104	5791.506
J042-J081	J042	F270	1.29	0.0050	12048.193
J042-J081	J042	F271	1.12	0.0024	24691.358
J042-J081	J042	F225	0.85	0.0006	98360.656

MEMBRO	NÓ	DIREÇAO DA CARGA	TENSÃO SIMPLES (kN/cm2)	DANO	VIDA CALCULADA
J042-J081	J042	F090	0.15	0.0000	INFINITA
J042-J081	J042	F091	0.22	0.0000	INFINITA
J043-J069	J043	F225	3.15	0.2857	209.988
J043-J069	J043	F271	2.94	0.2163	277.418
J043-J069	J043	F181	2.92	0.2086	287.604
J043-J069	J043	F270	2.81	0.1782	336.644
J043-J069	J043	F180	2.36	0.0846	709.22
J043-J069	J043	F135	2.14	0.0548	1095.69
J043-J069	J043	F091	1.49	0.0101	5934.718
J043-J069	J043	F315	1.47	0.0095	6349.206
J043-J069	J043	F090	1.36	0.0064	9389.671
J043-J069	J043	F045	1.27	0.0046	13043.478
J043-J069	J043	F000	1.04	0.0017	35928.144
J043-J069	J043	F001	0.54	0.0001	857142.857
J044-J070	J044	F270	8.72	10.1593	5.906
J044-J070	J044	F271	8.65	9.8803	6.073
J044-J070	J044	F315	7.13	5.3234	11.271
J044-J070	J044	F225	6.17	3.3078	18.139
J044-J070	J044	F091	5.32	2.0000	30
J044-J070	J044	F090	5.25	1.9023	31.54
J044-J070	J044	F001	5.23	1.8824	31.874
J044-J070	J044	F181	3.88	0.6376	94.104
J044-J070	J044	F135	3.73	0.5518	108.743
J044-J070	J044	F045	2.77	0.1684	356.379
J044-J070	J044	F180	1.83	0.0266	2259.036
J044-J070	J044	F000	0.50	0.0000	1500000
J045-J071	J045	F181	4.11	0.7924	75.722
J045-J071	J045	F180	4.08	0.7732	77.605
J045-J071	J045	F225	3.47	0.4156	144.366
J045-J071	J045	F135	3.27	0.3302	181.686
J045-J071	J045	F001	2.16	0.0573	1048.035
J045-J071	J045	F000	2.14	0.0541	1109.673
J045-J071	J045	F271	1.79	0.0242	2480.364
J045-J071	J045	F045	1.49	0.0101	5952.381
J045-J071	J045	F270	1.47	0.0093	6423.983
J045-J071	J045	F091	1.37	0.0067	8982.036
J045-J071	J045	F315	1.35	0.0062	9693.053
J045-J071	J045	F090	1.03	0.0016	37037.037

Tabela A.2 – Resultados da análise espectral no SACS – Junta J006 – Carregamento

mínimo

JUNTA	DIRECÃO	ESTADO DE	RMS	N° DE	DANO
		MAR	TENSÃO (MPa)	CICLOS	
J006	1	1	0.695	42892.20	3.3153E-11

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	1	2	0.903	131441.70	3.7472E-10
J006	1	3	1.519	13368.54	5.1451E-10
J006	1	4	1.813	5888.57	5.4823E-10
J006	1	5	1.354	267845.80	5.7976E-09
J006	1	6	1.649	271323.60	1.5706E-08
J006	1	7	1.943	7691.79	1.0123E-09
J006	1	8	2.279	10024.42	2.9297E-09
J006	1	9	2.719	2943.59	2.0811E-09
J006	1	10	3.099	2651.26	3.6012E-09
J006	1	11	2.198	271273.80	6.6172E-08
J006	1	12	2.590	80753.46	4.4786E-08
J006	1	13	3.039	13366.28	1.6461E-08
J006	1	14	3.626	5887.92	1.7541E-08
J006	1	15	4.132	7954.48	4.5530E-08
J006	1	16	2.748	9042.23	6.7311E-09
J006	1	17	3.238	134585.20	2.2779E-07
J006	1	18	3.798	13366.93	5.0239E-08
J006	1	19	4.532	5888.21	5.3535E-08
J006	1	20	3.886	38456.50	1.6196E-07
J006	1	21	4.558	26733.84	2.5002E-07
J006	1	22	5.318	3341.20	6.7538E-08
J006	2	1	0.369	25474.32	8.3035E-13
J006	2	2	0.475	30748.47	3.5486E-12
J006	2	3	1.649	9332.63	5.4099E-10
J006	2	4	0.713	61492.52	5.3890E-11
J006	2	5	1.159	73343.61	7.2787E-10
J006	2	6	1.857	3559.34	3.7388E-10
J006	2	7	3.343	13788.62	2.7356E-08
J006	2	8	1.545	52970.27	2.2152E-09
J006	2	9	2.476	17796.11	7.8774E-09
J006	2	10	3.298	3110.96	5.7707E-09
J006	2	11	1.931	4074.74	5.2004E-10
J006	2	12	3.095	17796.10	2.4040E-08
J006	2	13	4.122	3110.96	1.7611E-08
J006	2	14	3.714	10677.73	3.5892E-08
J006	2	15	4.947	9332.62	1.3146E-07
J006	3	1	0.397	5720.40	2.6767E-13
J006	3	2	0.816	17851.12	3.0737E-11
J006	3	3	2.337	2908.21	9.6461E-10
J006	3	4	1.224	31236.51	4.0842E-10
J006	3	5	2.094	7874.24	1.5083E-09
J006	3	6	1.632	4462.29	2.4586E-10
J006	3	7	2.792	19685.51	1.5890E-08
J006	3	8	3.659	3453.20	1.0772E-08
J006	3	9	4.675	5816.40	6.1735E-08
J006	3	10	6.807	5139.65	3.5706E-07

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	3	11	4.574	20719.17	1.9725E-07
J006	3	12	8.508	5139.65	1.0896E-06
J006	3	13	5.489	6906.40	1.6361E-07
J006	3	14	7.012	2908.20	2.3440E-07
J006	3	15	8.181	2908.20	5.0663E-07
J006	3	16	9.349	2908.20	9.8776E-07
J006	4	1	0.826	24883.36	4.5405E-11
J006	4	2	1.679	9868.65	6.2530E-10
J006	4	3	3.535	3740.79	9.8133E-09
J006	4	4	2.518	19732.94	9.4945E-09
J006	4	5	3.992	16952.21	8.1712E-08
J006	4	6	5.302	3740.65	7.4517E-08
J006	4	7	7.421	2996.35	3.2062E-07
J006	4	8	5.323	29665.91	6.0257E-07
J006	4	9	7.069	7481.48	6.2804E-07
1006	4	10	8.394	6681.94	1.3235E-06
1006	4	11	9,895	2996.35	1.3511E-06
1006	4	12	4 196	4932.89	3.0523E-08
1006	4	13	8 837	37407 14	9 5831E-06
1006	7	14	10 /02	6681.06	4.0291E-06
1006	4	14	10.492	2006.25	4.03912-00
1000	4	15	7.094	4227.00	4.11002-00
1000	4	10	7.984	4237.90	0.530/E-0/
1000	4	17	10.604	18703.65	1.1923E-05
1006	4	18	12.590	13363.92	2.00/3E-05
J006	4	19	14.689	10022.84	3.2159E-05
1006	4	20	17.316	2996.35	2.0924E-05
J006	4	21	22.263	2996.35	6.1971E-05
J006	5	1	0.942	31989.81	1.1298E-10
J006	5	2	2.204	8749.68	2.1652E-09
J006	5	3	3.307	30609.72	5.7520E-08
J006	5	4	6.732	27417.88	1.8021E-06
J006	5	5	9.125	3536.48	1.0637E-06
J006	5	6	12.335	2810.48	3.8110E-06
J006	5	7	4.409	8744.95	6.9248E-08
J006	5	8	8.976	62668.61	1.7358E-05
J006	5	9	12.167	56583.36	7.1659E-05
J006	5	10	14.030	6341.22	1.6246E-05
J006	5	11	16.446	8431.44	4.6355E-05
J006	5	12	20.125	2528.37	3.4608E-05
J006	5	13	5.511	4372.45	1.0566E-07
J006	5	14	11.220	7833.56	6.6215E-06
J006	5	15	15.208	63656.19	2.4189E-04
J006	5	16	17.538	22194.34	1.6435E-04
J006	5	17	20.558	8431.46	1.2579E-04
J006	5	18	25.156	2528.38	8.3888E-05
J006	5	19	18.250	28291.76	2.5117E-04

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	5	20	21.045	38047.43	6.2447E-04
J006	5	21	24.669	11241.94	3.4618E-04
J006	5	22	21.292	7072.94	1.2175E-04
J006	5	23	24.553	22194.33	6.7126E-04
J006	5	24	28.781	16862.91	9.1097E-04
J006	5	25	28.060	3170.61	1.5694E-04
J006	5	26	32.892	22483.85	1.9164E-03
J006	5	27	40.249	2528.37	4.1368E-04
J006	5	28	37.004	25294.31	3.1698E-03
J006	5	29	45.280	12641.86	2.9873E-03
J006	5	30	50.312	2528.37	8.2664E-04
J006	5	31	59.381	2336.59	1.2654E-03
J006	6	1	0.369	24983.56	8.1546E-13
J006	6	2	0.713	27914.01	2.4466E-11
J006	6	3	1.762	3055.21	2.4640E-10
1006	6	4	6.335	6200.02	3.0079E-07
1006	6	5	1.070	46506.81	3.0953E-10
1006	6	6	1 805	111379 70	1 0138E-08
1006	6	7	2 642	3055 17	1.8711E-09
1006	6	, 8	4 073	18/9 1/	2 5837E-08
1006	6	8	4.073	2066 67	2.3837L-08
1000	6	9	9.505	122752.80	1.01572-07
1000	6	10	2.400	123732.80	4.74092-08
1000	0	11	2.072	18/33/.80	1.2131E-07
1000	0	12	5.525	33008.30	0.0/35E-00
1006	6	13	5.430	7273.70	1.6331E-07
1006	6	14	8.704	21/0.38	5.1536E-07
1006	6	15	16.064	5937.89	2.9212E-05
1006	6	16	1.783	4650.07	3.9800E-10
1006	6	17	3.008	24/50.00	2.8972E-08
1006	6	18	3.340	179988.80	3.5569E-07
1006	6	19	4.404	100824.40	7.9407E-07
J006	6	20	6.788	24247.10	1.6614E-06
1006	6	21	10.879	6511.14	4.7183E-06
J006	6	22	4.008	44080.33	2.1676E-07
J006	6	23	5.285	152762.40	2.9938E-06
J006	6	24	8.146	65464.82	1.1162E-05
J006	6	25	13.055	2170.38	3.9060E-06
J006	6	26	4.676	3673.18	3.9040E-08
J006	6	27	6.165	113045.00	4.7884E-06
J006	6	28	9.503	89711.91	3.3061E-05
J006	6	29	15.231	6511.14	2.4918E-05
J006	6	30	7.046	9165.51	7.5692E-07
J006	6	31	10.861	46068.19	3.3100E-05
J006	6	32	17.407	21705.02	1.5529E-04
J006	6	33	12.218	50917.29	6.5864E-05
J006	6	34	19.583	28216.14	3.4231E-04

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	6	35	28.508	2066.67	1.0803E-04
J006	6	36	21.759	56431.04	1.0619E-03
J006	6	37	31.675	14466.68	1.0903E-03
J006	6	38	14.934	4849.14	1.6876E-05
J006	6	39	23.935	13022.28	3.5757E-04
J006	6	40	34.843	28934.54	2.9807E-03
J006	6	41	44.177	5937.88	1.2998E-03
J006	6	42	26.110	8681.52	3.3239E-04
J006	6	43	38.010	22734.53	3.1015E-03
J006	7	1	0.131	5589.80	1.0208E-15
J006	7	2	0.262	33554.48	1.9608E-13
J006	7	3	0.573	52702.30	1.5442E-11
J006	7	4	0.778	41931.75	5.6694E-11
J006	7	5	0.899	14945.28	4.1679E-11
1006	7	6	1.015	10109.66	5.1832E-11
1006	7	7	1.184	11266.75	1.2478E-10
1006	7	8	1 770	6764 54	5 5824F-10
1006	7	9	2 708	10050 25	6 9602F-09
1006	7	10	3 817	17064 25	6 5776E-08
1006	7	11	1 8/3	361/ 57	4 5808F-08
1006	7	11	5 679	1722.26	4.38082-08
1000	7	12	5.076	1/25.50	4.05592-00
1000	7	13	0.393	1030.74	0.3094E-00
1000	7	14	0.202	2003.01	5./902E-U/
1000	7	15	0.393	01424.22	2.4794E-13
1006	7	16	0.859	81434.23	1.8119E-10
1006	/	17	1.100	230631.50	2.3679E-09
1006	/	18	1.348	74724.29	1.5824E-09
1006	/	19	1.523	/4120.63	2.8857E-09
1006	/	20	1.//6	30984.93	2.6060E-09
1006	/	21	2.655	112/1.0/	7.0632E-09
1006	/	22	4.062	12059.44	6.3421E-08
J006	7	23	5.726	1895.15	5.5473E-08
1006	7	24	7.265	9040.20	8.7000E-07
J006	7	25	8.516	5173.67	1.1020E-06
J006	7	26	12.698	2803.81	4.3947E-06
J006	7	27	1.146	14373.44	1.3477E-10
J006	7	28	1.555	180309.20	7.8012E-09
J006	7	29	1.798	362401.40	3.2341E-08
J006	7	30	2.030	154983.20	2.5427E-08
J006	7	31	2.369	76045.80	2.6952E-08
J006	7	32	3.539	18035.59	4.7628E-08
J006	7	33	5.416	24123.09	5.3460E-07
J006	7	34	7.635	3790.29	4.6752E-07
J006	7	35	9.687	9040.20	3.6662E-06
J006	7	36	11.355	3446.71	3.0937E-06
J006	7	37	12.786	3273.48	5.3093E-06

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	7	38	1.432	4787.80	1.3700E-10
J006	7	39	1.944	33547.09	4.4294E-09
J006	7	40	2.247	392290.50	1.0684E-07
J006	7	41	2.538	239213.80	1.1977E-07
J006	7	42	2.961	132379.60	1.4318E-07
J006	7	43	4.424	83413.51	6.7223E-07
J006	7	44	6.770	54273.83	3.6706E-06
J006	7	45	9.544	17064.25	6.4234E-06
J006	7	46	12.109	14465.84	1.7889E-05
J006	7	47	14.194	20691.07	5.6115E-05
J006	7	48	15.982	1636.74	7.8592E-06
J006	7	49	2.696	108348.00	7.3424E-08
J006	7	50	3.046	262800.50	3.2741E-07
J006	7	51	3.553	183082.80	4.9274E-07
J006	7	52	5.309	87920.02	1.7631E-06
J006	7	53	8.124	114583.70	1.9283E-05
J006	7	54	11.452	72051.25	6.7488E-05
J006	7	55	14.530	18080.41	5.5007E-05
1006	7	56	17.033	17240.76	1.1162E-04
1006	7	57	19,179	1636.74	1.8097F-05
1006	7	58	3.146	14944.82	2.1890F-08
1006	7	59	3 553	151615 90	4 0827E-07
1006	7	60	4 145	214061.80	1 24525-06
1006	7	61	6 194	72142 38	3 1269E-06
1006	7	62	9.178	80/10 33	2 92/8E-05
1006	7	63	13 361	1251/13 10	2.5240L-05
1006	7	64	16 05 2	12207 52	2.3230E 04
1006	7	65	10.552	21024 80	4 01925-04
1006	7	66	22 275	0922.85	2.07455-04
1006	7	67	22.373	2724.25	1.06645.09
1006	7	69	4.061	20212.15	1.00041-08
1000	7	60	4.001	104240.20	2.20425.06
1000	7	70	4.757	194549.50	2.2042E-00
1000	7	70	10.922	22164.12	0.3023E-00
1000	7	71	10.832	32104.13	2.2810E-03
1000	7	72	10.274	43012.14	2.55515.04
1006	7	73	19.374	30738.96	3.5551E-04
1006	7	74	22./10	12070.69	2./113E-04
1006	/	75	25.5/1	13100.75	4.6286E-04
J006	7	76	28.857	4598.50	2.5070E-04
J006	7	77	4.568	3367.52	3.1859E-08
J006	7	78	5.329	76045.83	1.5542E-06
J006	7	79	7.964	85666.68	1.3045E-05
J006	7	80	12.187	34173.33	4.3633E-05
J006	7	81	17.179	22753.65	1.5319E-04
J006	7	82	21.795	23506.04	4.4540E-04
J006	7	83	25.549	15517.40	5.4639E-04

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	7	84	28.768	13100.75	7.0666E-04
J006	7	85	32.464	4598.50	3.7550E-04
J006	7	86	5.921	30984.90	1.0724E-06
J006	7	87	8.848	67631.10	1.7441E-05
J006	7	88	13.541	36182.55	7.7896E-05
J006	7	89	19.087	9479.70	1.0261E-04
J006	7	90	24.217	10847.49	3.1139E-04
J006	7	91	28.388	18967.71	9.7719E-04
J006	7	92	31.964	22924.59	1.7796E-03
J006	7	93	36.071	4598.50	5.3129E-04
J006	7	94	6.514	16897.13	9.4186E-07
J006	7	95	9.733	40577.75	1.6853E-05
J006	7	96	14.895	64328.27	2.2101E-04
J006	7	97	20.996	18959.39	3.0823E-04
J006	7	98	26.639	1807.28	7.4779E-05
J006	7	99	31.227	3446.71	2.4749E-04
900L	7	100	35.161	8187.11	8.6910E-04
J006	7	101	39.678	6130.27	9.5839E-04
J006	7	102	10.618	18035.61	1.1574E-05
J006	7	103	16.249	52264.61	2.7138E-04
J006	7	104	22.905	15169.10	3.5303E-04
J006	7	105	29.061	3614.57	2.0193E-04
J006	7	106	34.065	5173.67	4.9475E-04
J006	7	107	38.357	6550.37	9.1971E-04
J006	7	108	43.285	7662.03	1.5746E-03
J006	7	109	11.503	13524.34	1.2950E-05
J006	7	110	17.603	32164.14	2.4229E-04
J006	7	111	24.813	32233.34	1.0149E-03
J006	7	112	41.554	1636.74	2.9649E-04
J006	7	113	12.388	4506.54	6.2433E-06
J006	7	114	18.957	10050.24	1.0553E-04
J006	7	115	26.722	26543.94	1.1117E-03
J006	7	116	33.904	3614.57	3.4030E-04
J006	7	117	44.750	6550.37	1.4923E-03
J006	7	118	50.499	3063.53	1.0130E-03
J006	7	119	13.273	9017.80	1.7605E-05
J006	7	120	20.311	8041.04	1.1424E-04
J006	7	121	28.631	13273.96	7.0428E-04
J006	7	122	36.326	1807.29	2.1365E-04
J006	7	123	14.157	4506.54	1.2068E-05
J006	7	124	21.665	2009.21	3.7141E-05
J006	7	125	30.540	1895.15	1.2586E-04
J006	7	126	38.747	7232.92	1.0487E-03
J006	7	127	57.713	3063.53	1.5223E-03
J006	7	128	23.019	10050.24	2.3832E-04
J006	7	129	41.169	1807.28	3.1780E-04

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	7	130	61.320	3063.53	1.8282E-03
J006	7	131	15.927	2253.27	1.0645E-05
J006	7	132	24.373	12059.45	3.5470E-04
J006	7	133	34.357	5689.40	5.5957E-04
J006	7	134	25.727	2009.21	7.2662E-05
J006	7	135	36.266	1895.15	2.2287E-04
J006	7	136	46.013	1807.29	4.4887E-04
J006	8	1	0.370	51428.73	1.7027E-12
J006	8	2	0.540	151631.90	3.3192E-11
J006	8	3	0.878	33622.48	8.3344E-11
J006	8	4	1.005	29424.36	1.4326E-10
J006	8	5	1.201	29389.12	3.4952E-10
J006	8	6	1.402	47513.67	1.2239E-09
J006	8	7	1.482	32299.11	1.0993E-09
J006	8	8	1.728	81655.47	5.9888E-09
1006	8	9	2.218	57210.77	1.4598E-08
1006	8	10	2.830	68887.64	5.9429E-08
1006	8	11	3 439	19154 48	4 3833F-08
1006	8	12	3 980	6585.95	3 1269E-08
1006	0	12	5.010	5929.25	8 7772E-08
1006	0	14	0.556	12021 01	2 22505 12
1000	0	14	0.550	12051.91	2.02275.10
1000	0	15	0.810	185810.40	5.0667E-10
1000	0	10	1.517	126116 10	0.0929E-09
1000	0	17	1.507	130110.10	5.0320E-09
1006	8	18	1.802	159952.90	1.4445E-08
1006	8	19	2.103	290983.50	5.6920E-08
1006	8	20	2.224	266475.60	6.88/1E-08
1006	8	21	2.593	191303.30	1.0655E-07
J006	8	22	3.327	140977.40	2./31/E-0/
1006	8	23	4.245	148961.40	9.7586E-07
1006	8	24	5.159	/8356.41	1.361/E-06
J006	8	25	5.970	47716.98	1.7204E-06
1006	8	26	6.712	10879.08	7.0471E-07
J006	8	27	7.518	2913.05	3.3256E-07
J006	8	28	1.081	19568.80	1.3707E-10
J006	8	29	1.756	361525.70	2.8677E-08
J006	8	30	2.010	573938.40	8.9422E-08
J006	8	31	2.403	443922.80	1.6894E-07
J006	8	32	2.804	712619.50	5.8741E-07
J006	8	33	2.965	804823.60	8.7655E-07
J006	8	34	3.457	692915.80	1.6262E-06
J006	8	35	4.436	625218.80	5.1051E-06
J006	8	36	5.660	258815.70	7.1450E-06
J006	8	37	6.879	102726.80	7.5226E-06
J006	8	38	7.960	83918.93	1.2750E-05
J006	8	39	8.950	32650.29	8.9125E-06

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	8	40	10.024	4381.81	2.1080E-06
J006	8	41	2.195	50441.92	1.2211E-08
J006	8	42	2.512	544515.20	2.5890E-07
J006	8	43	3.003	443925.40	5.1558E-07
J006	8	44	3.505	638401.40	1.6059E-06
J006	8	45	3.706	893660.90	2.9703E-06
J006	8	46	4.321	1012548.00	7.2522E-06
J006	8	47	5.545	913294.50	2.2758E-05
J006	8	48	7.074	625641.80	5.2709E-05
J006	8	49	8.599	212422.80	4.7472E-05
J006	8	50	9.950	123406.90	5.7217E-05
J006	8	51	11.187	34202.57	2.8492E-05
J006	8	52	12.529	11664.42	1.7102E-05
J006	8	53	14.159	4090.27	1.0961E-05
J006	8	54	16.064	2548.18	1.2536E-05
J006	8	55	3.014	213387.70	2.5247E-07
J006	8	56	3.604	434119.90	1.2546E-06
J006	8	57	4.206	332567.40	2.0817E-06
J006	8	58	4.447	427992.80	3.5397E-06
J006	8	59	5.185	569271.60	1.0146E-05
J006	8	60	6.654	496499.10	3.0785E-05
J006	8	61	8.489	482257.90	1.0110E-04
J006	8	62	10.318	370874.00	2.0624E-04
J006	8	63	11.940	149736.80	1.7266E-04
J006	8	64	13.424	37307.14	7.6997E-05
J006	8	65	15.035	7294.85	2.6248E-05
J006	8	66	16.991	5449.88	3.4891E-05
J006	8	67	19.277	5107.07	5.7769E-05
J006	8	68	3.517	40473.20	1.0350E-07
1006	8	69	4.204	205638.50	1.2845E-06
1006	8	70	4.907	213796.90	2.8925E-06
1006	8	71	5.188	134593.10	2.4059E-06
1006	8	72	6.049	202971.20	7.8186E-06
1006	8	73	7,763	216583.70	2.9026E-05
1006	8	74	9,904	290470.00	1.3161E-04
1006	8	75	12.038	255962.00	3.0744F-04
1006	8	76	13 930	199096.80	4 9244F-04
1006	8	73	15 662	77731 85	3 3921E-04
1006	8	78	17 541	10207.90	7 5663E-05
1006	2	79	19 872	6809 50	8 7235F-05
1006	Q	۶ <u>۵</u>	10.025	3672 77	1 83165-09
1006	Q	00 Q1	4.019	78222 00	9 53055.07
1006	Q	82	5 609	181122 70	A 7770E-06
1006	Q	83	5.000	807/6 70	2 81/25.06
1006	0	00	6.014	53650 65	2.0142E-00
J006	8	85	8.872	128719.20	3.3633E-05

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	8	86	11.319	148961.50	1.3159E-04
J006	8	87	13.758	106218.60	2.4720E-04
J006	8	88	15.920	120120.80	5.6621E-04
J006	8	89	17.899	63735.21	5.1858E-04
J006	8	90	20.047	16046.24	2.1615E-04
J006	8	91	22.655	1359.62	3.0232E-05
J006	8	92	6.309	92036.18	4.3748E-06
J006	8	93	6.671	64597.34	4.0570E-06
J006	8	94	7.778	32653.89	4.4193E-06
J006	8	95	9.981	32694.12	1.5394E-05
J006	8	96	12.734	46544.61	7.3979E-05
J006	8	97	15.477	78356.38	3.2338E-04
J006	8	98	17.910	65817.92	5.3700E-04
J006	8	99	20.136	54408.40	7.4650E-04
J006	8	100	22.553	14589.71	3.1838E-04
J006	8	101	25.487	4090.27	1.4269E-04
J006	8	102	6.006	3259.30	1.2113E-07
J006	8	103	7.010	17814.26	1.4340E-06
J006	8	104	7.412	40384.63	4.2953E-06
J006	8	105	8.642	18656.61	4.2760E-06
J006	8	106	11.090	12258.17	9.7745E-06
J006	8	107	14.149	11171.33	2.9827E-05
J006	8	108	17.197	19154.42	1.2960E-04
J006	8	109	19.900	51003.04	6.6472E-04
J006	8	110	22.374	26428.07	5.5796E-04
J006	8	111	25.059	14589.71	4.7697E-04
J006	8	112	28.319	8169.11	4.1735E-04
J006	8	113	7.711	5929.80	7.6876E-07
J006	8	114	8.153	10773.79	1.8455E-06
J006	8	115	9.506	9338.10	3.4469E-06
J006	8	116	12.198	6137.66	7.8749E-06
J006	8	117	15.564	14889.90	6.3082E-05
J006	8	118	18.917	5230.58	5.4411E-05
J006	8	119	21.890	24686.90	4.7615E-04
J006	8	120	24.611	17101.28	5.2193E-04
J006	8	121	27.565	5838.33	2.7184E-04
J006	8	122	31.151	10888.34	7.7517E-04
J006	8	123	35.342	1274.09	1.3757E-04
J006	8	124	8.894	13461.58	3.5627E-06
J006	8	125	10.371	11667.72	6.6542E-06
J006	8	126	13.307	4080.34	8.0685E-06
J006	8	127	16.979	3718.57	2.3725E-05
J006	8	128	20.636	1738.66	2.6347E-05
J006	8	129	23.880	13158.06	3.5817E-04
J006	8	130	26.849	6222.20	2.6477E-04
J006	8	131	11.235	2329.63	1.9825E-06

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	8	132	14.416	6137.66	1.7965E-05
J006	8	133	22.356	5230.58	1.1007E-04
J006	8	134	25.870	14814.90	5.4729E-04
J006	8	135	29.086	3104.58	1.7396E-04
J006	8	136	12.099	4659.26	5.7389E-06
J006	8	137	27.859	3286.06	1.5869E-04
J006	8	138	16.634	6137.66	3.5615E-05
J006	8	139	29.849	1643.03	1.0074E-04
J006	8	140	33.561	4669.91	4.2520E-04
J006	8	141	35.798	1552.29	1.7488E-04
J006	8	142	33.829	1643.03	1.5357E-04
J006	8	143	47.612	1456.52	4.0228E-04
J006	8	144	50.118	2913.05	9.4126E-04
J006	9	1	0.988	3700.20	1.6560E-11
J006	9	2	1.130	3323.28	2.9119E-11
J006	9	3	1.507	2022.06	7.4748E-11
J006	9	4	1.623	3790.03	2.0305E-10
J006	9	5	0.778	32065.43	4.3306E-11
J006	9	6	1.195	66023.02	7.6554E-10
J006	9	7	1.569	34140.83	1.5424E-09
J006	9	8	1.976	25954.12	3.7169E-09
1006	9	9	2.260	69976.70	1.9621E-08
J006	9	10	2.390	67483.21	2.5006E-08
J006	9	11	2.459	74233.55	3.1711E-08
J006	9	12	2.404	21467.96	8.1991E-09
J006	9	13	2.453	54150.26	2.2872E-08
J006	9	14	2.707	33275.72	2.3015E-08
J006	9	15	3.014	32449.55	3.8384E-08
J006	9	16	3.246	30284.07	5.1919E-08
J006	9	17	3.369	21541.33	4.4474E-08
J006	9	18	3.397	1718.81	3.6992E-09
J006	9	19	1.166	6382.72	6.5453E-11
J006	9	20	1.793	202962.10	1.7870E-08
J006	9	21	2.353	277255.20	9.5112E-08
J006	9	22	2.964	140934.80	1.5327E-07
J006	9	23	3.390	366597.20	7.8055E-07
1006	9	24	3.585	637941.10	1.7951E-06
J006	9	25	3.688	719519.90	2.3341E-06
1006	9	26	3.606	370251.20	1.0738E-06
J006	9	27	3.680	204267.30	6.5516E-07
1006	9	28	4.061	135330.60	7.1077E-07
J006	9	29	4.521	46634.94	4.1890E-07
1006	9	30	4,870	35959.96	4.6815E-07
1006	9	31	5.054	12560.48	1.9692E-07
1006	9	32	5.096	6889.37	1.1259F-07
1006	9	33	5.038	10017.49	1.5452E-07

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	9	34	4.916	3260.70	4.4505E-08
J006	9	35	4.758	3194.77	3.7041E-08
J006	9	36	2.390	20277.20	7.5234E-09
J006	9	37	3.138	396671.70	5.7343E-07
J006	9	38	3.952	374593.40	1.7167E-06
J006	9	39	4.520	583218.80	5.2329E-06
J006	9	40	4.779	1487491.00	1.7638E-05
J006	9	41	4.917	1276265.00	1.7446E-05
J006	9	42	4.808	1569501.00	1.9182E-05
J006	9	43	4.906	1257639.00	1.6998E-05
J006	9	44	5.415	521398.70	1.1540E-05
J006	9	45	6.028	206825.30	7.8288E-06
J006	9	46	6.493	104075.00	5.7096E-06
J006	9	47	6.739	39501.50	2.6097E-06
J006	9	48	6.795	25853.08	1.7805E-06
J006	9	49	6.717	10017.44	6.5114E-07
J006	9	50	6.554	11392.05	6.5523E-07
J006	9	51	6.344	1590.75	7.7721E-08
1006	9	52	6.109	1564.07	6.3260E-08
1006	9	53	3,922	119429.20	5.2688F-07
1006	9	54	4.940	597157.10	8.3515E-06
1006	9	55	5 650	316589 70	8 6687E-06
1006	9	56	5.050	653286.20	2 3640E-05
1006	9	57	6 1 / 7	7052/13 30	2.3040E-03
1006	9	58	6.011	855840 10	2.1021E-05
1006	9	50	6 122	1102570.00	J.1921L-05
1006	9	59	6 760	1012046-00	4.3478L-03
1006	9	60	7 5 2 5	1015940.00	0.0404E-05
1006	9	62	0 116	104010 20	2 26225 05
1000	9	62	0.110	70022 58	3.2032E-05
1000	9	63	8.423	22415 42	1.4118E-05
1000	9	64	8.494	22415.42	4./111E-00
1000	9	65	8.396	10017.44	1.9871E-06
1006	9	66	8.193	4884.26	8.5/32E-07
1006	9	67	7.930	1590.75	2.3/18E-07
1006	9	68	7.636	1564.06	1.9305E-07
1006	9	69	5.928	370900.10	1.2907E-05
J006	9	70	6.780	363248.70	2.4750E-05
J006	9	71	7.169	217761.70	1.9608E-05
J006	9	72	7.376	299799.60	3.1121E-05
J006	9	73	7.213	338041.20	3.1373E-05
J006	9	74	7.359	260872.50	2.6775E-05
J006	9	75	8.122	363870.40	6.1154E-05
J006	9	76	9.042	304154.90	8.7426E-05
J006	9	77	9.739	193023.60	8.0413E-05
J006	9	78	10.108	41291.50	2.0716E-05
J006	9	79	10.192	17244.82	9.0186E-06

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	9	80	10.075	1664.95	8.2182E-07
J006	9	81	9.832	1623.58	7.0912E-07
J006	9	82	6.916	40803.50	3.0691E-06
J006	9	83	7.910	169966.20	2.5030E-05
J006	9	84	8.364	156421.40	3.0443E-05
J006	9	85	8.605	94231.09	2.1142E-05
J006	9	86	8.415	118037.60	2.3677E-05
J006	9	87	8.586	110753.30	2.4569E-05
J006	9	88	9.476	126463.60	4.5939E-05
J006	9	89	10.550	182495.80	1.1338E-04
J006	9	90	11.362	141921.70	1.2779E-04
J006	9	91	11.793	37696.23	4.0863E-05
J006	9	92	11.891	5170.58	5.8419E-06
J006	9	93	11.754	1664.95	1.7758E-06
J006	9	94	11.102	1590.74	1.2756E-06
J006	9	95	10.690	1564.06	1.0383E-06
J006	9	96	7.904	7427.22	1.0892E-06
J006	9	97	9.040	33339.55	9.5723E-06
J006	9	98	9.559	88939.05	3.3747E-05
J006	9	99	9.835	25692.92	1.1239E-05
J006	9	100	9.617	34887.28	1.3644E-05
J006	9	101	9.812	63985.58	2.7674E-05
J006	9	102	10.830	26620.15	1.8853E-05
J006	9	103	12.057	34470.70	4.1724E-05
J006	9	104	12.986	68130.55	1.1938E-04
J006	9	105	13.477	32311.19	6.7985E-05
J006	9	106	13.590	3451.84	7.5645E-06
J006	9	107	13.434	5008.71	1.0372E-05
J006	9	108	13.109	1623.57	2.9823E-06
J006	9	109	10.171	19992.66	1.0344E-05
J006	9	110	10.754	49081.94	3.3561E-05
J006	9	111	11.064	11411.13	8.9950E-06
J006	9	112	10.819	10722.54	7.5567E-06
J006	9	113	11.039	17218.24	1.3420E-05
J006	9	114	12.183	17752.91	2.2637E-05
J006	9	115	13.564	6082.10	1.3204E-05
J006	9	116	14.609	15141.87	4.7300E-05
J006	9	117	15.162	7175.29	2.6879E-05
J006	9	118	11.949	3058.07	3.5392E-06
J006	9	119	12.293	5717.43	7.6246E-06
J006	9	120	12.021	8047.53	9.5985E-06
J006	9	121	12.266	4928.29	6.4985E-06
J006	9	122	13.537	4442.84	9.5524E-06
J006	9	123	15.071	12164.19	4.4278E-05
J006	9	124	16.232	11352.47	5.8659E-05
J006	9	125	16.847	8980.30	5.5282E-05

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	9	126	16.987	1718.76	1.0992E-05
J006	9	127	13.143	6141.66	1.1430E-05
J006	9	128	13.523	11411.21	2.4408E-05
J006	9	129	13.492	4928.29	1.0425E-05
J006	9	130	14.891	4442.83	1.5245E-05
J006	9	131	16.578	6082.09	3.4729E-05
J006	9	132	17.855	3789.40	3.0484E-05
J006	9	133	18.686	1718.76	1.6934E-05
J006	9	134	14.338	3058.09	8.7157E-06
J006	9	135	14.752	5717.47	1.8737E-05
J006	9	136	14.425	5372.45	1.5773E-05
J006	9	137	14.719	4928.29	1.5972E-05
J006	9	138	16.244	2212.20	1.1472E-05
J006	9	139	19.478	5676.23	6.7240E-05
J006	9	140	15.981	2846.87	1.3666E-05
1006	9	141	15.945	2453.92	1.1655E-05
1006	9	142	21.101	1886.84	3.1309E-05
1006	9	143	17 172	2453 92	1 6491E-05
1006	9	144	22 725	1886 84	4 2493E-05
1006	9	145	22.725	1700.09	4.65026-05
1006	9	145	19 209	2452.02	4.0302L-03
1000	9	140	10.590	2455.92	2.23772-03
1000	9	147	25.270	5595.10	1.2137E-04
1000	10	1	1 204	3160.10	5.140/E-14
1000	10	2	1.394	3109.19	7.9415E-11
1006	10	3	1.050	2899.74	1.7149E-10
1006	10	4	1.732	5455.77	4.0393E-10
1006	10	5	1.682	5134.09	3.2892E-10
1006	10	6	0.567	23531.63	6.5770E-12
J006	10	/	1.121	38097.22	3.2115E-10
J006	10	8	1.700	49449.34	3.3347E-09
J006	10	9	2.181	31925.01	7.4861E-09
J006	10	10	2.789	66464.62	5.3296E-08
J006	10	11	3.311	81070.50	1.5343E-07
J006	10	12	3.463	49024.79	1.1615E-07
J006	10	13	3.365	43584.92	8.9353E-08
J006	10	14	3.526	40451.01	1.0479E-07
J006	10	15	3.722	17831.75	6.0526E-08
J006	10	16	3.778	10605.56	3.8800E-08
J006	10	17	3.732	24382.70	8.3869E-08
J006	10	18	1.682	138121.70	8.8417E-09
J006	10	19	2.550	205979.50	1.0548E-07
J006	10	20	3.271	195121.20	3.4744E-07
J006	10	21	4.183	848168.40	5.1646E-06
J006	10	22	4.967	1172759.00	1.6854E-05
J006	10	23	5.195	708242.60	1.2742E-05
J006	10	24	5.047	358875.00	5.5869E-06

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	10	25	5.289	190326.40	3.7440E-06
J006	10	26	5.582	124868.10	3.2185E-06
J006	10	27	5.667	46670.16	1.2966E-06
J006	10	28	5.597	48751.18	1.2734E-06
J006	10	29	5.638	22882.69	6.1975E-07
J006	10	30	6.218	8434.71	3.7261E-07
J006	10	31	7.583	4299.98	5.1276E-07
J006	10	32	9.535	1255.20	4.7041E-07
J006	10	33	13.856	2187.75	5.2716E-06
J006	10	34	2.243	28584.08	7.7106E-09
J006	10	35	3.399	317217.00	6.8455E-07
J006	10	36	4.362	404426.10	3.0347E-06
J006	10	37	5.577	772218.00	1.9815E-05
J006	10	38	6.622	1520236.00	9.2066E-05
J006	10	39	6.927	1370188.00	1.0388E-04
J006	10	40	6.729	1294531.00	8.4925E-05
J006	10	41	7.052	844590.70	7.0013E-05
J006	10	42	7.443	365673.30	3.9718E-05
J006	10	43	7.556	133638.40	1.5645E-05
J006	10	44	7.463	75168.02	8.2738E-06
J006	10	45	7.517	36219.96	4.1338E-06
J006	10	46	8.290	10123.97	1.8846E-06
J006	10	47	10.111	1436.63	7.2191E-07
J006	10	48	12.714	1255.20	1.9792E-06
J006	10	49	15.609	1151.32	4.9451E-06
J006	10	50	2.803	4769.49	3.9263E-09
J006	10	51	4.249	140058.90	9.2238E-07
J006	10	52	5.452	539250.50	1.2348E-05
J006	10	53	6.972	300652.30	2.3543E-05
J006	10	54	8.278	582030.40	1.0757E-04
J006	10	55	8.658	558422.60	1.2920E-04
J006	10	56	8.411	487045.10	9.7508E-05
J006	10	57	8.814	594770.40	1.5046E-04
J006	10	58	9.304	570814.90	1.8921E-04
J006	10	59	9.444	284225.00	1.0155E-04
J006	10	60	9.329	136110.40	4.5721E-05
J006	10	61	9.397	43843.11	1.5271E-05
J006	10	62	10.362	3378.54	1.9194E-06
J006	10	63	12.639	1436.63	2.1999E-06
J006	10	64	15.892	2510.40	1.1736E-05
J006	10	65	5.099	16472.56	2.6994E-07
J006	10	66	6.542	180935.00	1.0310E-05
J006	10	67	8.366	240526.20	4.6867E-05
J006	10	68	9.934	194016.80	8.9225E-05
J006	10	69	10.390	296913.50	1.7094E-04
J006	10	70	10.094	194821.50	9.7054E-05

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	10	71	10.577	114189.30	7.1881E-05
J006	10	72	11.165	236354.80	1.9495E-04
J006	10	73	11.333	165454.80	1.4709E-04
J006	10	74	11.194	83290.84	6.9619E-05
J006	10	75	11.276	40038.11	3.4700E-05
J006	10	76	12.435	5056.15	7.1388E-06
J006	10	77	15.167	1436.63	5.3898E-06
J006	10	78	7.633	14185.69	1.7471E-06
J006	10	79	9.760	136076.00	5.7309E-05
J006	10	80	11.589	107147.20	1.0650E-04
J006	10	81	12.122	73555.80	9.1456E-05
J006	10	82	11.776	66651.78	7.1745E-05
J006	10	83	12.340	49963.96	6.7906E-05
J006	10	84	13.026	55743.30	9.9186E-05
J006	10	85	13.222	33940.58	6.5040E-05
J006	10	86	13.060	36559.87	6.5921E-05
J006	10	87	13.155	9532.25	1.7818E-05
J006	10	88	14.507	1689.27	5.0997E-06
J006	10	89	17.695	1436.63	1.1085E-05
J006	10	90	8.723	3552.55	8.5303E-07
J006	10	91	11.155	25309.32	2.0782E-05
J006	10	92	13.245	49234.07	9.5136E-05
J006	10	93	13.853	27240.10	6.5586E-05
J006	10	94	13.458	28200.86	5.8929E-05
J006	10	95	14.103	9513.03	2.5000E-05
J006	10	96	14.886	31213.19	1.0695E-04
J006	10	97	15.111	6357.45	2.3442E-05
J006	10	98	14.926	18279.94	6.3456E-05
J006	10	99	15.034	11441.34	4.1156E-05
J006	10	100	16.580	1689.27	9.6514E-06
J006	10	101	14.900	14478.25	4.9838E-05
J006	10	102	15.585	16347.82	6.9709E-05
J006	10	103	15.141	17950.83	6.6800E-05
J006	10	104	15.866	14277.76	6.6235E-05
J006	10	105	16.747	31213.18	1.8700E-04
J006	10	106	17.000	21211.04	1.3612E-04
J006	10	107	16.792	4068.44	2.4673E-05
J006	10	108	16.914	7623.17	4.7791E-05
J006	10	109	18.652	16869.38	1.6489E-04
J006	10	110	16.556	5799.30	3.2907E-05
J006	10	111	17.317	8164.50	5.7033E-05
J006	10	112	17.629	2382.37	1.8069E-05
J006	10	113	18.608	13381.48	1.2942E-04
J006	10	114	18.889	16962.97	1.7531E-04
J006	10	115	20.725	5056.15	7.7961E-05
J006	10	116	18.505	5133.87	4.8456E-05

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	10	117	19.392	2382.37	2.7667E-05
J006	10	118	20.469	4465.63	6.5464E-05
J006	10	119	20.778	10605.52	1.6523E-04
J006	10	120	22.797	3378.54	7.7106E-05
J006	10	121	20.188	2566.94	3.5581E-05
J006	10	122	21.155	9513.04	1.5948E-04
J006	10	123	22.667	2124.03	4.7330E-05
J006	11	1	3.155	2408.05	3.5806E-09
J006	11	2	0.385	6150.26	2.4583E-13
J006	11	3	0.882	9276.74	2.3523E-11
J006	11	4	1.642	15422.22	8.7622E-10
J006	11	5	2.623	29969.14	1.7701E-08
J006	11	6	3.876	183433.20	7.6278E-07
J006	11	7	4.745	70874.01	8.1057E-07
J006	11	8	5.774	70803.15	2.1600E-06
J006	11	9	6.311	24047.64	1.1442E-06
J006	11	10	6.205	16235.77	7.0979E-07
J006	11	11	5.871	27080.10	8.9794E-07
J006	11	12	5.559	8781.25	2.2164E-07
J006	11	13	5.440	8380.29	1.8988E-07
J006	11	14	1.323	41665.82	8.0229E-10
J006	11	15	2.464	231413.10	9.9841E-08
J006	11	16	3.935	309752.30	1.3893E-06
J006	11	17	5.814	1503548.00	4.7478E-05
J006	11	18	7.118	1788352.00	1.5531E-04
J006	11	19	8.661	685261.80	1.5875E-04
J006	11	20	9.466	343923.20	1.2427E-04
J006	11	21	9.307	166953.80	5.5426E-05
J006	11	22	8.806	121845.10	3.0680E-05
J006	11	23	8.339	65896.42	1.2630E-05
J006	11	24	8.160	71267.88	1.2262E-05
J006	11	25	8.764	15059.60	3.7027E-06
J006	11	26	10.797	4706.74	3.2837E-06
J006	11	27	14.299	1320.10	3.7120E-06
J006	11	28	23.213	1104.35	2.7024E-05
J006	11	29	27.583	1065.43	4.9723E-05
J006	11	30	1.764	18513.39	1.5022E-09
J006	11	31	3.285	362547.50	6.5914E-07
J006	11	32	5.247	552896.10	1.0450E-05
J006	11	33	7.752	923183.20	1.2285E-04
J006	11	34	9.490	2000991.00	7.3232E-04
J006	11	35	11.548	1335130.00	1.3034E-03
J006	11	36	12.621	974058.40	1.4810E-03
J006	11	37	12.409	695643.80	9.7204E-04
J006	11	38	11.742	279807.30	2.9682E-04
J006	11	39	11.118	138375.10	1.1176E-04

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	11	40	10.881	92225.73	6.6867E-05
J006	11	41	11.686	35758.62	3.7043E-05
J006	11	42	14.396	10996.55	3.1966E-05
J006	11	43	19.065	5271.47	5.6771E-05
J006	11	44	36.778	1065.43	1.3096E-04
J006	11	45	4.106	61707.25	3.4237E-07
J006	11	46	6.558	459634.40	2.6511E-05
J006	11	47	9.690	414976.30	1.6852E-04
J006	11	48	11.863	550688.10	6.1478E-04
J006	11	49	14.434	642274.00	1.8915E-03
J006	11	50	15.776	264556.40	1.1949E-03
J006	11	51	15.511	389564.20	1.6244E-03
J006	11	52	14.677	218884.60	6.9958E-04
J006	11	53	13.897	101036.30	2.4708E-04
J006	11	54	13.601	92225.70	2.0290E-04
J006	11	55	14.607	33874.57	1.0576E-04
J006	11	56	4.927	3861.63	5.3314E-08
J006	11	57	7.870	86591.62	1.2428E-05
J006	11	58	11.627	213499.50	2.1572E-04
J006	11	59	14.235	125407.90	3.4497E-04
J006	11	60	17.321	123901.10	8.6654E-04
J006	11	61	18.932	108230.60	1.1298E-03
J006	11	62	18.614	97383.20	9.4315E-04
J006	11	63	17.612	81240.27	6.1352E-04
J006	11	64	16.677	43921.05	2.5798E-04
J006	11	65	16.321	64972.05	3.4450E-04
J006	11	66	17.529	24467.09	1.8076E-04
J006	11	67	21.594	4706.74	8.5845E-05
J006	11	68	9.181	29967.94	9.2963E-06
J006	11	69	13.565	81188.78	1.7636E-04
J006	11	70	16.608	73603.34	4.2386E-04
J006	11	71	20.208	50566.26	7.0382E-04
J006	11	72	22.087	48095.23	9.6261E-04
J006	11	73	21.716	16235.76	3.0304E-04
J006	11	74	20.548	22561.64	3.3596E-04
J006	11	75	19.456	2199.02	2.5920E-05
J006	11	76	19.041	20957.81	2.2443E-04
J006	11	77	20.450	20698.99	3.0232E-04
J006	11	78	25.193	3144.91	1.0494E-04
J006	11	79	33.364	2640.20	2.3580E-04
J006	11	80	10.493	6669.56	4.0338E-06
1006	11	81	15.503	3010.76	1.2523E-05
J006	11	82	18.980	46345.56	4.8930E-04
J006	11	83	23.095	27814.87	6.6775E-04
J006	11	84	25.242	14431.82	4.8515E-04
1006	11	85	24.818	23184.97	7.3054E-04
			1.010		

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	11	86	23.483	18058.48	4.6151E-04
J006	11	87	22.236	4398.05	9.0508E-05
J006	11	88	21.761	10478.90	1.9727E-04
J006	11	89	23.372	5639.40	1.4157E-04
J006	11	90	28.792	1572.45	8.5066E-05
J006	11	91	21.353	2729.46	4.7537E-05
J006	11	92	25.982	15173.30	5.6998E-04
J006	11	93	27.920	9270.85	4.5108E-04
J006	11	94	26.419	6762.39	2.7093E-04
J006	11	95	25.015	4398.05	1.4283E-04
J006	11	96	28.869	12641.56	6.9020E-04
J006	11	97	31.553	4816.03	3.5840E-04
J006	11	98	29.354	4518.44	2.6137E-04
J006	11	99	27.795	4398.05	2.1070E-04
J006	11	100	27.201	2098.62	9.3371E-05
1006	11	101	34.708	4816.03	4.8981E-04
1006	11	102	32.289	4518.44	3.6253E-04
1006	11	103	30.574	4398.05	2.9325E-04
1006	12	1	1.271	4637.43	7.2981E-11
1006	12	2	5.753	2939.57	8.8099F-08
1006	12	3	2 541	18509 39	9 3210F-09
1006	12	4	1 820	56440.66	7.0487E-07
1006	12	5	9.127	77854 37	1 31255-05
1006	12	5	10 536	224666 50	1.3125E-05
1006	12	7	11 507	13/015 60	1.3000E 04
1006	12	8	10.997	70617 58	5.4008E-05
1006	12	9	0.557	2/052.26	1.00565-05
1006	12	10	9.042	24338.30	5.07025-06
1006	12	10	8.905	21/15.74	5.57522-00
1006	12	12	0.492	14960.00	2.2010E 06
1000	12	12	8.304	20504.05	2.79102-00
1000	12	13	0.429	20594.05	4.10/2E-00
1000	12	14	3.811	129467.20	4.9509E-07
1006	12	15	7.244	402631.30	3.8184E-05
1006	12	16	12.191	863093.10	1.1039E-03
1006	12	17	15.803	2330992.00	1.0614E-02
1006	12	18	17.260	2/12/6/.00	1.8665E-02
J006	12	19	16.496	861566.20	4.8053E-03
1006	12	20	14.762	302320.50	9.9420E-04
J006	12	21	13.447	179262.70	3.7305E-04
J006	12	22	12.738	138793.60	2.2098E-04
J006	12	23	12.456	54525.55	7.7624E-05
J006	12	24	12.644	41187.99	6.3196E-05
J006	12	25	13.775	24184.81	5.6631E-05
J006	12	26	16.592	3360.87	1.9266E-05
1006	12	27	21.240	1409.27	2.4021E-05
J006	12	28	5.082	13869.72	2.2350E-07

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	12	29	9.659	579508.40	2.3159E-04
J006	12	30	16.254	1110169.00	5.7739E-03
J006	12	31	21.071	1466618.00	2.4194E-02
J006	12	32	23.013	2492799.00	5.9054E-02
J006	12	33	21.995	1429358.00	2.8118E-02
J006	12	34	19.683	612939.90	7.6078E-03
J006	12	35	17.929	334083.50	2.7396E-03
J006	12	36	16.984	238309.70	1.5229E-03
J006	12	37	16.607	109051.20	6.2797E-04
J006	12	38	16.859	82392.88	5.0888E-04
J006	12	39	18.367	32251.38	2.9448E-04
J006	12	40	12.073	60208.20	7.3376E-05
J006	12	41	20.318	704017.20	1.0016E-02
J006	12	42	26.339	549211.60	2.1748E-02
J006	12	43	28.766	639324.40	3.4479E-02
J006	12	44	27.493	488701.30	2.2553E-02
J006	12	45	24.604	280121.80	8.5400E-03
1006	12	46	22.412	143950.80	3.0605E-03
1006	12	47	21.231	75949.52	1.2921E-03
1006	12	48	20.759	66928.54	1.0390F-03
1006	12	49	21 074	52640 34	8 6877E-04
1006	12	50	21.074	12092 /0	2 8392F-04
1006	12	51	35 /01	1/09 27	1 5301F-04
1006	12	52	2/ 382	111703.00	3 2898F-03
1006	12	52	24.502	240128.20	2 54545-02
1006	12	54	24 520	106404 10	1 06205-02
1006	12	54	22 002	192622.10	1.50251-02
1006	12	55	20 525	103022.10	1.3607E-02
1000	12	50	29.525	10960.89	0.0401E-05
1000	12	57	20.894	22566.55	4.0521E-04
1000	12	58	25.477	23200.22	8.2083E-04
1000	12	59	24.911	2484.25	7.9402E-05
1000	12	60	25.288	38911.02	1.31/2E-03
1006	12	61	28.445	23697.60	1.2294E-03
1006	12	62	36.874	118576.90	1.4697E-02
J006	12	63	40.273	140772.80	2.3076E-02
J006	12	64	38.491	36724.41	5.2134E-03
J006	12	65	34.446	74895.36	7.4290E-03
J006	12	66	31.376	19017.27	1.3887E-03
J006	12	67	29.063	4950.23	2.7662E-04
J006	12	68	29.503	18300.15	1.0774E-03
J006	12	69	32.509	3392.50	2.7828E-04
J006	12	70	42.142	18720.24	3.5418E-03
J006	12	71	46.026	96788.04	2.4061E-02
J006	12	72	43.989	39555.77	8.5455E-03
J006	12	73	39.367	33277.74	5.0739E-03
J006	12	74	35.859	24442.18	2.7692E-03

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	12	75	33.718	2293.84	2.1208E-04
J006	12	76	47.410	3127.71	8.5251E-04
J006	12	77	51.779	20533.41	7.3287E-03
J006	12	78	49.488	31082.50	9.6637E-03
J006	12	79	44.287	8319.44	1.8353E-03
J006	12	80	40.341	5424.92	8.9407E-04
J006	12	81	57.533	8796.94	4.3301E-03
J006	12	82	54.986	16946.52	7.2671E-03
J006	13	1	5.426	2842.37	6.3562E-08
J006	13	2	5.951	2663.84	9.4559E-08
J006	13	3	0.959	6078.00	2.3492E-11
J006	13	4	2.345	100995.00	3.4081E-08
J006	13	5	4.779	167298.70	1.9822E-06
J006	13	6	6.999	202842.80	1.6194E-05
J006	13	7	9.048	237573.60	6.8515E-05
J006	13	8	10.852	113293.90	8.1072E-05
J006	13	9	11.903	53077.80	6.0262E-05
J006	13	10	11.933	22743.52	2.6156E-05
J006	13	11	11.535	16964.84	1.6469E-05
J006	13	12	11.235	13914.65	1.1843E-05
J006	13	13	11.129	11041.53	8.9631E-06
J006	13	14	11.259	4149.52	3.5689E-06
J006	13	15	11.905	1904.07	2.1642E-06
J006	13	16	1.439	12092.31	3.5489E-10
J006	13	17	3.518	474125.90	1.2150E-06
J006	13	18	7.168	1093330.00	9.8370E-05
J006	13	19	10.498	1546984.00	9.3785E-04
J006	13	20	13.573	3396931.00	7.3985E-03
J006	13	21	16.278	2438528.00	1.2770E-02
J006	13	22	17.854	552087.60	4.4401E-03
J006	13	23	17.900	118790.20	9.6681E-04
J006	13	24	17.302	84824.12	5.9018E-04
J006	13	25	16.853	64973.43	4.0062E-04
J006	13	26	16.694	22083.03	1.3033E-04
J006	13	27	16.888	10382.40	6.4633E-05
J006	13	28	17.858	7584.79	6.1063E-05
J006	13	29	4.691	21955.81	2.3709E-07
J006	13	30	9.557	1248963.00	4.7354E-04
J006	13	31	13.997	2069531.00	5.2417E-03
J006	13	32	18.097	1937560.00	1.6576E-02
J006	13	33	21.704	2534814.00	4.7206E-02
J006	13	34	23.805	894505.80	2.4065E-02
J006	13	35	23.867	207248.70	5.6302E-03
J006	13	36	23.069	111477.50	2.6650E-03
J006	13	37	22.470	62644.74	1.3464E-03
J006	13	38	22.258	57404.89	1.1863E-03

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	13	39	22.517	26980.46	5.8491E-04
J006	13	40	23.811	7584.80	2.0423E-04
J006	13	41	27.155	1668.41	7.3801E-05
J006	13	42	11.947	35013.39	4.0490E-05
J006	13	43	17.497	1375105.00	1.0074E-02
J006	13	44	22.621	826874.20	1.8272E-02
J006	13	45	27.130	552280.60	2.4352E-02
J006	13	46	29.757	299930.00	1.8192E-02
J006	13	47	29.834	123842.00	7.5792E-03
J006	13	48	28.836	55738.72	3.0314E-03
J006	13	49	28.088	41763.15	2.0742E-03
J006	13	50	27.823	75056.66	3.6083E-03
J006	13	51	28.146	31147.19	1.5581E-03
J006	13	52	29.763	5696.46	3.4578E-04
J006	13	53	14.336	3904.73	1.1120E-05
J006	13	54	20.996	237196.70	3.8562E-03
J006	13	55	27.145	802180.40	3.5440E-02
J006	13	56	32.556	308709.70	2.5444E-02
J006	13	57	35.708	87596.98	9.7869E-03
J006	13	58	35.800	30331.64	3.4179E-03
J006	13	59	34.604	26653.27	2.6840E-03
J006	13	60	33.388	13238.83	1.1851E-03
J006	13	61	33.776	14531.91	1.3512E-03
J006	13	62	35.716	1904.07	2.1289E-04
J006	13	63	24.495	30936.21	9.2738E-04
J006	13	64	31.670	126489.00	9.5272E-03
J006	13	65	37.982	195415.90	2.6596E-02
J006	13	66	41.659	55741.53	1.0178E-02
J006	13	67	41.767	15155.34	2.7893E-03
J006	13	68	38.952	2215.63	3.2665E-04
J006	13	69	39.405	2083.37	3.1864E-04
J006	13	70	36.194	18501.21	2.1619E-03
J006	13	71	43.408	104790.20	2.1726E-02
J006	13	72	47.611	23886.08	6.5968E-03
J006	13	73	47.734	5051.78	1.4064E-03
J006	13	74	48.834	22668.13	6.7678E-03
J006	13	75	53.562	15916.71	6.2994E-03
J006	13	76	54.260	11322.32	4.6618E-03
J006	13	77	59.513	10611.14	5.7854E-03
J006	13	78	59.667	17691.71	9.7212E-03
J006	13	79	65.465	5305.57	3.8585E-03
J006	13	80	65.634	7588.15	5.5617E-03
J006	14	1	1.510	2947.50	1.1015E-10
J006	14	2	3.040	2410.07	2.9727E-09
J006	14	3	0.241	78893.14	3.0272E-13
J006	14	4	0.773	223235.20	2.9205E-10

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	14	5	1.564	381316.00	1.6946E-08
J006	14	6	2.304	521529.50	1.6112E-07
J006	14	7	3.021	350088.50	4.1864E-07
J006	14	8	4.358	90077.41	6.7332E-07
J006	14	9	6.079	14433.25	5.6968E-07
J006	14	10	7.711	6494.55	8.4164E-07
J006	14	11	8.251	7779.52	1.4149E-06
J006	14	12	0.361	11270.47	3.2837E-13
J006	14	13	1.159	845622.40	8.4008E-09
J006	14	14	2.345	2696279.00	9.0992E-07
J006	14	15	3.457	2437244.00	5.7179E-06
J006	14	16	4.531	3318532.00	3.0135E-05
J006	14	17	6.537	1307469.00	7.4215E-05
J006	14	18	9.118	144332.40	4.3260E-05
J006	14	19	10.833	40991.47	2.9079E-05
J006	14	20	11.566	34564.64	3.4015E-05
J006	14	21	11.952	4114.55	4.7695E-06
J006	14	22	12.377	3900.72	5.3811E-06
J006	14	23	13.364	5399.18	1.0902E-05
J006	14	24	1.545	55809.41	2.3364E-09
1006	14	25	3.127	2953050.00	4.1995E-06
1006	14	26	4.609	4533778.00	4.4822E-05
1006	14	27	6.041	3200864.00	1.2248E-04
1006	14	28	8.716	2388483.00	5.7132E-04
1006	14	29	12.158	274231.50	3.4607E-04
1006	14	30	14.444	34172.38	1.0097E-04
J006	14	31	15.421	23764.71	9.6417E-05
1006	14	32	15.937	22583.80	1.0699E-04
1006	14	33	16.503	5851.07	3.2699E-05
1006	14	34	17,819	5399.18	4.3030E-05
1006	14	35	22,391	1521.90	3.2235E-05
1006	14	36	3 909	116720 40	5.0656E-07
1006	14	37	5.365	3431633.00	1 0353E-04
1006	14	38	7 552	1503348.00	1 7556E-04
1006	14	39	10.895	1099008.00	8.0225E-04
1006	14	40	15 197	286254.80	1 0842E-03
1006	1/	40	18.055	250/6 08	2 121/F-0/
1006	14	41	10.055	/329 70	1 8969F-05
1006	14	42	13.277	4323.70	4.8909L-05
1006	14	43	22.274	20/2 81	1 40265-04
1000	14	44	27.969	3045.01	2.02705.05
1000	14	45	0.913	403323.80	3.0279E-05
1006	14	40	3.002	285702 70	4.231/E-04
1000	14	47	10.074	102442 70	0.15405.04
1000	14	48	10.237	103442.70	9.10492-04
1000	14	49	21.000	4503.15	0.43/4E-U5
1000	14	50	33.58/	1521.90	1.3893E-04

J006 14 51 8.065 6966.68 1.1304E-06 J006 14 52 10.573 367739.70 2.3096E-04 J006 14 53 15.253 229061.30 8.8266E-04 J006 14 55 25.277 2281.58 7.7109F.05 J006 14 56 26.987 2150.36 1.0663E-04 J006 14 56 26.987 2150.36 1.0663E-04 J006 14 59 17.432 126119.90 9.0842E-04 J006 14 60 24.316 21663.40 6.3153E-04 J006 14 61 19.612 33463.91 4.0864E-04 J006 14 62 27.355 24046.38 1.0908E-03 J006 14 63 34.698 2164.85 2.1997E-04 J006 14 66 38.553 2164.85 3.091E-04 J006 14 66 38.553 2164.85 3.091E-04	NTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO	
J006 14 52 10.573 367739.70 2.3096E-04 J006 14 53 15.253 229061.30 8.8266E-04 J006 14 55 25.277 2281.58 7.7109E-05 J006 14 56 26.987 2164.85 9.3754E-05 J006 14 57 28.880 1950.36 1.0663E-04 J006 14 59 17.432 12613.90 9.0842E-05 J006 14 60 24.316 24663.40 6.3153E-04 J006 14 61 19.612 3346.391 4.0864E-04 J006 14 62 27.355 24046.38 1.0908E-03 J006 14 63 34.698 2164.85 2.1997E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 15 1 0.133 17073.29 3.3552E-1	006	14	51	8.065	6966.68	1.1304E-06	
1006 14 53 15.253 229061.30 8.8266E.04 1006 14 54 21.276 28866.47 4.9544E.04 1006 14 55 25.277 2281.58 7.7109E.05 1006 14 56 26.987 2164.85 9.3754E.05 1006 14 57 28.880 1950.36 1.0663E.04 1006 14 59 17.432 12613.90 9.082E.04 1006 14 61 19.12 33463.91 4.0864E.04 1006 14 62 27.355 24046.38 1.0908E.03 1006 14 62 27.355 24045.38 1.0908E.03 1006 14 64 30.395 9613.13 6.2789E.04 1006 14 65 36.110 4563.15 5.2913E.04 1006 14 67 33.434 7230.16 6.5021E.04 1006 15 1 0.133 17073.29 3.3552E.15 </th <th>006</th> <th>14</th> <th>52</th> <th>10.573</th> <th>367739.70</th> <th>2.3096E-04</th> <th></th>	006	14	52	10.573	367739.70	2.3096E-04	
J006 14 54 21.276 28866.47 4.9544E.04 J006 14 55 25.277 2281.58 7.7109E.05 J006 14 56 26.987 2164.85 9.3754E.05 J006 14 57 28.80 1950.36 1.0663E.04 J006 14 59 17.432 126119.90 9.0842E.04 J006 14 60 24.316 21663.40 6.3153E.04 J006 14 61 19.612 33463.91 4.0864E.04 J006 14 62 27.355 24046.38 1.0908E.03 J006 14 64 30.395 9613.13 6.279EF.04 J006 14 66 38.553 2164.85 3.0891E.04 J006 14 66 38.553 2164.85 3.0891E.04 J006 14 67 33.43 7230.16 6.5021E.04 J006 15 1 0.133 17073.29 3.3552E.15 <th>006</th> <th>14</th> <th>53</th> <th>15.253</th> <th>229061.30</th> <th>8.8266E-04</th> <th></th>	006	14	53	15.253	229061.30	8.8266E-04	
J006 14 55 25.277 2281.58 7.7109E-05 J006 14 56 26.987 2164.85 9.3754E-05 J006 14 57 28.80 1950.36 1.06631-04 J006 14 59 17.432 126119.90 9.0842E-04 J006 14 60 24.316 21663.40 6.3153E-04 J006 14 61 19.612 33463.91 4.0864E-04 J006 14 62 27.355 24046.38 1.0908E-03 J006 14 64 30.395 9613.13 6.2789E-04 J006 14 66 38.553 2164.85 2.1997E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 15 1 0.133 17073.29 3.552E-15 <th>006</th> <th>14</th> <th>54</th> <th>21.276</th> <th>28866.47</th> <th>4.9544E-04</th> <th></th>	006	14	54	21.276	28866.47	4.9544E-04	
J006 14 56 26.987 2164.85 9.3754E-05 J006 14 57 28.880 1950.36 1.0663E-04 J006 14 58 12.083 14704.28 1.7992E-05 J006 14 60 24.316 21663.40 6.3153E-04 J006 14 61 19.612 33463.91 4.0664E-04 J005 14 62 27.355 24046.38 1.0908E-03 J006 14 63 34.698 2164.85 2.1997E-04 J006 14 66 38.553 2164.85 2.1997E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 14 68 39.721 11382.25 1.7857E-03 J006 15 1 0.133 17073.29 3.552E-15 <th>006</th> <th>14</th> <th>55</th> <th>25.277</th> <th>2281.58</th> <th>7.7109E-05</th> <th></th>	006	14	55	25.277	2281.58	7.7109E-05	
J006 14 57 28.880 1950.36 1.0663E-04 J006 14 58 12.083 14704.28 1.7992E-05 J006 14 59 17.432 126119.90 9.0842E-04 J006 14 60 24.316 21663.40 6.3153E-04 J006 14 61 19.612 33463.91 4.0864E-04 J006 14 62 27.355 24046.38 1.0908E-03 J006 14 63 34.698 2164.85 2.1997E-04 J006 14 64 30.395 9613.13 6.2789E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 14 69 46.264 6494.55 1.6406E-03 J006 15 1 0.133 17073.29 3.352E-15 J006 15 3 0.266 136317.70 8.5723E-13 </th <th>006</th> <th>14</th> <th>56</th> <th>26.987</th> <th>2164.85</th> <th>9.3754E-05</th> <th></th>	006	14	56	26.987	2164.85	9.3754E-05	
J006 14 58 12.083 14704.28 1.7992E-05 J006 14 59 17.432 126119.90 9.0842E-04 J006 14 60 24.316 21663.40 6.3153E-04 J006 14 61 19.612 33463.91 4.0864E-04 J006 14 62 27.355 24046.38 1.0908E-03 J006 14 63 34.698 2164.85 2.1997E-04 J006 14 64 30.395 9613.13 6.2789E-04 J006 14 65 36.110 4563.15 5.2913E-04 J006 14 66 38.553 2164.85 3.0891E-04 J006 14 67 33.434 7230.16 6.5021E-04 J006 14 69 46.264 6494.55 1.6406E-03 J006 15 1 0.133 17073.29 3.352E-15 J006 15 3 0.266 136317.70 8.5723E-13 </th <th>006</th> <th>14</th> <th>57</th> <th>28.880</th> <th>1950.36</th> <th>1.0663E-04</th> <th></th>	006	14	57	28.880	1950.36	1.0663E-04	
J006145917.432126119.909.0842E-04J006146024.31621663.406.3153E-04J006146119.61233463.914.0864E-04J006146227.35524046.381.0908E-03J006146334.6982164.852.1997E-04J006146430.3959613.136.2789E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615164.9796630	006	14	58	12.083	14704.28	1.7992E-05	
J006146024.31621663.406.3153E-04J006146119.61233463.914.0864E-04J006146227.35524046.381.0908E-03J006146334.6982164.852.1997E-04J006146430.3959613.136.2789E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615171.10847526.7	006	14	59	17.432	126119.90	9.0842E-04	
J006146119.61233463.914.0864E-04J006146227.35524046.381.0908E-03J006146334.6982164.852.197F-04J006146430.3959613.136.2789E-04J006146536.1104563.155.2913E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J0061515164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615171.108 <td>006</td> <td>14</td> <td>60</td> <td>24.316</td> <td>21663.40</td> <td>6.3153E-04</td> <td></td>	006	14	60	24.316	21663.40	6.3153E-04	
J006146227.35524046.381.0908E-03J006146334.6982164.852.197F-04J006146430.3959613.136.2789E-04J006146536.1104563.155.2913E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J0061515144.169603213.403.6120E-06J0061515171.10847526.753.7751E-10J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J0061518	006	14	61	19.612	33463.91	4.0864E-04	
J006146334.6982164.852.197E-04J006146430.3959613.136.2789E-04J006146536.1104563.155.2913E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146638.5532164.853.0891E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954	006	14	62	27.355	24046.38	1.0908E-03	
J006146430.3959613.136.2789E-04J006146536.1104563.155.2913E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6444E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591	006	14	63	34.698	2164.85	2.1997E-04	
J006146536.1104563.155.2913E-04J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.974308563.001.4547E-05J00615215.559181	006	14	64	30.395	9613.13	6.2789E-04	
J006146638.5532164.853.0891E-04J006146733.4347230.166.5021E-04J006146839.72111382.251.7857E-03J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615100.831134983.002.5445E-09J00615111.2813809416.006.2399E-08J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615192.7616628924.005.0592E-06J00615203.974308563.001.4547E-05J00615215.5591812432.004.5734E-05	006	14	65	36.110	4563.15	5.2913E-04	
J006146733.4347230.166.5021E-04J006146839.72111382.251.7857E-03J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.974308563.001.4547E-05J00615215.5591812432.004.5734E-05	006	14	66	38.553	2164.85	3.0891E-04	
J006146839.72111382.251.7857E-03J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.974308563.001.4547E-05J00615215.5591812432.004.5734E-05	006	14	67	33.434	7230.16	6.5021E-04	
J006146946.2646494.551.6406E-03J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615122.071200645.003.6343E-07J00615132.9811503175.001.6817E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	14	68	39.721	11382.25	1.7857E-03	
J0061510.13317073.293.3552E-15J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	14	69	46.264	6494.55	1.6406E-03	
J0061520.9945871.392.7032E-11J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	1	0.133	17073.29	3.3552E-15	
J0061530.266136317.708.5723E-13J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	2	0.994	5871.39	2.7032E-11	
J0061540.554408824.101.0148E-10J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	3	0.266	136317.70	8.5723E-13	
J0061550.854202602.204.3703E-10J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	4	0.554	408824.10	1.0148E-10	
J0061561.381349414.908.3336E-09J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	5	0.854	202602.20	4.3703E-10	
J0061571.987182012.202.6815E-08J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	6	1.381	349414.90	8.3336E-09	
J0061582.77987735.296.9183E-08J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	7	1.987	182012.20	2.6815E-08	
J0061590.39911355.865.4227E-13J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615164.9796630.319.6494E-08J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	8	2.779	87735.29	6.9183E-08	
J00615100.8311349893.002.5445E-09J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	9	0.399	11355.86	5.4227E-13	
J00615111.2813809416.006.2399E-08J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	10	0.831	1349893.00	2.5445E-09	
J00615122.0712006645.003.6343E-07J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	11	1.281	3809416.00	6.2399E-08	
J00615132.9811503175.001.6817E-06J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	12	2.071	2006645.00	3.6343E-07	
J00615144.169603213.403.6120E-06J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615203.9746638924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	13	2.981	1503175.00	1.6817E-06	
J00615154.58752005.375.0197E-07J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	14	4.169	603213.40	3.6120E-06	
J00615164.9796630.319.6494E-08J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	15	4.587	52005.37	5.0197E-07	
J00615171.10847526.753.7751E-10J00615181.7083014954.002.0811E-07J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	16	4.979	6630.31	9.6494E-08	
J006 15 18 1.708 3014954.00 2.0811E-07 J006 15 19 2.761 6628924.00 5.0592E-06 J006 15 20 3.974 3085630.00 1.4547E-05 J006 15 21 5.559 1812432.00 4.5734E-05	006	15	17	1.108	47526.75	3.7751E-10	
J00615192.7616628924.005.0592E-06J00615203.9743085630.001.4547E-05J00615215.5591812432.004.5734E-05	006	15	18	1.708	3014954.00	2.0811E-07	
J006 15 20 3.974 3085630.00 1.4547E-05 J006 15 21 5.559 1812432.00 4.5734E-05	006	15	19	2.761	6628924.00	5.0592E-06	
J006 15 21 5.559 1812432.00 4.5734E-05	006	15	20	3.974	3085630.00	1.4547E-05	
	006	15	21	5.559	1812432.00	4.5734E-05	
J006 15 22 6.116 150815.50 6.1344E-06	006	15	22	6.116	150815.50	6.1344E-06	
J006 15 23 6.000 7285.67 2.6932E-07	006	15	23	6.000	7285.67	2.6932E-07	
J006 15 24 2.135 111215.40 2.3428E-08	006	15	24	2.135	111215.40	2.3428E-08	
J006 15 25 3.452 4222936.00 9.8357E-06	006	15	25	3.452	4222936.00	9.8357E-06	
J006 15 26 4.968 2794981.00 4.0212E-05	006	15	26	4.968	2794981.00	4.0212E-05	
				6.040			

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	15	28	7.645	267843.70	3.3247E-05
J006	15	29	7.500	7285.67	8.2189E-07
J006	15	30	4.142	489167.20	2.8350E-06
J006	15	31	5.962	2316412.00	8.2928E-05
J006	15	32	8.338	573071.30	1.0981E-04
J006	15	33	9.173	231439.80	7.1486E-05
J006	15	34	9.000	41216.07	1.1570E-05
J006	15	35	4.832	10003.00	1.2530E-07
J006	15	36	6.955	504972.60	3.9074E-05
J006	15	37	9.728	734850.00	3.0434E-04
J006	15	38	10.702	67606.98	4.5134E-05
J006	15	39	10.500	16980.07	1.0302E-05
J006	15	40	7.949	20567.75	3.1029E-06
J006	15	41	11.117	276931.20	2.2361E-04
J006	15	42	12.231	91025.34	1.1837E-04
J006	15	43	12.507	54834.52	7.9685E-05
J006	15	44	13.760	80624.27	1.8780E-04
J006	15	45	13.500	2438.47	5.1723E-06
J006	15	46	13.897	2758.55	6.7441E-06
J006	15	47	15.289	41604.30	1.6209E-04
J006	15	48	15.000	4847.20	1.7238E-05
1006	15	49	16.818	5200.54	3.1765E-05
J006	16	1	0.376	6607.04	2.3635E-13
J006	16	2	0.752	125715.70	1.4389E-10
J006	16	3	1.045	344340.80	2.0381E-09
J006	16	4	1.212	39475.30	4.9117E-10
J006	16	5	1.648	37308.80	2.1580E-09
J006	16	6	1.909	13267.43	1.6005E-09
1006	16	7	2.071	23922.24	4.3284E-09
J006	16	8	1.128	13214.20	1.1484E-10
J006	16	9	1.567	915604.10	4.1150E-08
1006	16	10	1.818	2064828.00	1.9509E-07
1006	16	11	2.472	253605.40	1.1139E-07
1006	16		2.864	102783.40	9.4157E-08
1006	16		3.106	47842.54	6.5735E-08
1006	16	14	2.090	42331.69	8.0170F-09
1006	16	15	2 424	1893665.00	7 5395E-07
1006	16	16	3 297	1633452.00	3 0233E-06
1006	16	17	3 819	172408.00	6 6555E-07
1006	16	18	4 141	128582 70	7 4449F-07
1006	16	10	4.141	2715 65	3.09125-08
1006	16	20	3 030	166572.00	2 0220F 07
1006	16	20	J. 121	1853/62.00	1 04695-05
1006	16	21	4.121 A 772	245250 20	2 80055 06
1006	16	22	5 176	62705.00	1 1006F_06
1000	10	23	5.170	12504.00	1.10302-00
1000	10	24	3.920	13394.00	4.72236-07

JUNTA	DIREÇÃO	ESTADO DE MAR	RMS TENSÃO (MPa)	N° DE CICLOS	DANO
J006	16	25	4.945	328190.40	4.6127E-06
J006	16	26	5.728	540446.20	1.5843E-05
J006	16	27	6.212	41860.39	1.8405E-06
J006	16	28	7.111	8154.82	7.0490E-07
J006	16	29	5.769	33559.65	1.0195E-06
J006	16	30	6.683	109417.50	6.9326E-06
J006	16	31	7.247	71764.27	6.8199E-06
J006	16	32	8.296	2715.67	5.0737E-07
J006	16	33	6.593	3725.30	2.2064E-07
J006	16	34	7.637	33157.04	4.0959E-06
J006	16	35	8.282	35886.08	6.6489E-06
J006	16	36	9.481	16309.54	5.9409E-06
J006	16	37	9.317	11964.79	3.9948E-06
				2.2401E+08	1.0364

Tabela A.3 - Calibração reversa - Carregamento mínimo

MEMBRO	NO	Max Comb. (kN/cm2)	DANO DA ESPECTRAL	NÚMERO DE CICLOS	NOVO WEIBULL
J001-J047	J001	3.09	0.0042657	1.8921600E+08	0.457
J002-J048	J002	6.86	0.9257928	1.8921600E+08	0.647
J003-J074	J003	3.47	0.0154798	1.8921600E+08	0.515
J004-J050	J004	4.57	0.0568015	1.8921600E+08	0.532
J005-J090	J005	4.02	0.0263726	1.8921600E+08	0.511
J006-J051	J006	8.20	1.036354	1.8921600E+08	0.601
J007-J068	J007	2.75	0.024298	1.8921600E+08	0.633
J008-J052	J008	3.74	0.0616608	1.8921600E+08	0.603
1009-1083	J009	3.60	0.0306535	1.8921600E+08	0.556
J010-J084	J010	4.74	0.130663	1.8921600E+08	0.589
J011-J053	J011	2.55	0.0016675	1.8921600E+08	0.444
J012-J085	J012	4.26	0.0767779	1.8921600E+08	0.578
J013-J077	J013	5.08	0.1605975	1.8921600E+08	0.585
J014-J075	J014	2.41	0.0180232	1.8921600E+08	0.657
J015-J055	J015	2.97	0.0254978	1.8921600E+08	0.607
J016-J072	J016	2.21	0.0073323	1.8921600E+08	0.612
J017-J056	J017	2.22	0.0015053	1.8921600E+08	0.479
J018-J086	J018	3.53	0.021435	1.8921600E+08	0.535
J019-J082	J019	2.31	0.0011572	1.8921600E+08	0.454
J020-J076	J020	2.23	0.0093849	1.8921600E+08	0.629
J021-J057	J021	2.72	0.012262	1.8921600E+08	0.576
J022-J080	J022	2.31	0.0172714	1.8921600E+08	0.673
J023-J059	J023	1.97	0.0010677	1.8921600E+08	0.490

MEMBRO	NO	Max Comb. (kN/cm2)	DANO DA ESPECTRAL	NÚMERO DE CICLOS	NOVO WEIBULL
J024-J060	1024	2.45	0.0016504	1.8921600E+08	0.457
J025-J061	J025	2.58	0.002353	1.8921600E+08	0.467
J026-J062	J026	2.55	0.0062901	1.8921600E+08	0.545
J027-J054	J027	4.45	0.0909065	1.8921600E+08	0.578
J028-J063	J028	3.25	0.0055632	1.8921600E+08	0.461
J029-J089	J029	4.07	0.0412069	1.8921600E+08	0.542
J030-J064	J030	3.47	0.0658137	1.8921600E+08	0.635
J031-J058	J031	5.12	0.1434556	1.8921600E+08	0.573
J032-J065	J032	2.45	0.0040565	1.8921600E+08	0.523
J033-J088	J033	4.20	0.0481301	1.8921600E+08	0.544
J034-J046	J034	2.12	0.0119249	1.8921600E+08	0.674
J035-J079	J035	2.44	0.0062326	1.8921600E+08	0.559
J036-J066	J036	4.72	0.0995685	1.8921600E+08	0.567
J037-J087	J037	4.83	0.1269892	1.8921600E+08	0.581
J038-J067	J038	2.28	0.0031559	1.8921600E+08	0.530
J039-J049	J039	7.55	0.8402893	1.8921600E+08	0.607
J040-J078	J040	3.51	0.0267492	1.8921600E+08	0.554
J041-J073	J041	4.78	0.091478	1.8921600E+08	0.557
J042-J081	J042	2.73	0.0285582	1.8921600E+08	0.649
J043-J069	J043	3.15	0.0056022	1.8921600E+08	0.469
J044-J070	J044	8.72	0.7131625	1.8921600E+08	0.552
J045-J071	J045	4.11	0.0360727	1.8921600E+08	0.529
J034-J046	J046	2.11	0.0113529	1.8921600E+08	0.672
J001-J047	J047	2.97	0.0018519	1.8921600E+08	0.415
J002-J048	J048	6.86	0.9551468	1.8921600E+08	0.651
J039-J049	J049	6.90	0.6573412	1.8921600E+08	0.613
J004-J050	J050	3.76	0.0234872	1.8921600E+08	0.522
J006-J051	J051	7.18	0.6834229	1.8921600E+08	0.604
J008-J052	J052	3.58	0.0558609	1.8921600E+08	0.609
J011-J053	J053	2.50	0.001042	1.8921600E+08	0.418
J027-J054	J054	4.36	0.0724819	1.8921600E+08	0.566
J015-J055	J055	2.65	0.0187965	1.8921600E+08	0.623
J017-J056	J056	2.01	0.00083611	1.8921600E+08	0.465
J021-J057	J057	2.57	0.0098941	1.8921600E+08	0.579
J031-J058	J058	5.03	0.1195333	1.8921600E+08	0.563
J023-J059	J059	1.75	0.00054925	1.8921600E+08	0.481
J024-J060	J060	2.45	0.0013418	1.8921600E+08	0.440
J025-J061	J061	2.51	0.0019884	1.8921600E+08	0.464
J026-J062	J062	2.31	0.0051238	1.8921600E+08	0.564
J028-J063	J063	2.94	0.0031651	1.8921600E+08	0.453
J030-J064	J064	3.30	0.0742096	1.8921600E+08	0.666
J032-J065	J065	2.30	0.0029352	1.8921600E+08	0.521
J036-J066	J066	4.49	0.0903545	1.8921600E+08	0.575
J038-J067	J067	2.26	0.0029063	1.8921600E+08	0.528

MEMBRO	NO	Max Comb. (kN/cm2)	DANO DA ESPECTRAL	NÚMERO DE CICLOS	NOVO WEIBULL
J007-J068	J068	2.69	0.0218746	1.8921600E+08	0.631
J043-J069	J069	2.79	0.0015617	1.8921600E+08	0.416
J044-J070	J070	7.62	0.4333602	1.8921600E+08	0.548
J045-J071	J071	4.37	0.0452134	1.8921600E+08	0.528
J016-J072	J072	2.23	0.0038667	1.8921600E+08	0.551
J041-J073	J073	3.93	0.0395764	1.8921600E+08	0.549
J003-J074	J074	3.40	0.0125451	1.8921600E+08	0.505
J014-J075	J075	2.41	0.0175867	1.8921600E+08	0.656
J020-J076	J076	2.26	0.00505	1.8921600E+08	0.572
J013-J077	J077	4.91	0.1345499	1.8921600E+08	0.580
J040-J078	J078	3.42	0.0201318	1.8921600E+08	0.540
J035-J079	J079	2.48	0.0031608	1.8921600E+08	0.501
J022-J080	J080	2.30	0.0167103	1.8921600E+08	0.671
J042-J081	J081	2.65	0.0240757	1.8921600E+08	0.647
J019-J082	J082	2.03	0.00049751	1.8921600E+08	0.426
J009-J083	J083	3.42	0.0234692	1.8921600E+08	0.552
J010-J084	J084	4.56	0.1057607	1.8921600E+08	0.583
J012-J085	J085	4.10	0.0612063	1.8921600E+08	0.572
J018-J086	J086	3.45	0.0182807	1.8921600E+08	0.529
J037-J087	J087	4.71	0.1023846	1.8921600E+08	0.570
J033-J088	J088	4.22	0.0394776	1.8921600E+08	0.528
J029-J089	J089	4.07	0.0359714	1.8921600E+08	0.532
J005-J090	J090	4.09	0.0356946	1.8921600E+08	0.530
ANEXO B – IDENTIFICAÇÃO DAS JUNTAS NO MODELO

Figura B.1 – Numeração das juntas estruturais (SACS)